Decision Tree Algorithm.
Calls C50::C5.0.formula() from C50.
Meta Information
Task type: “classif”
Predict Types: “response”, “prob”
Feature Types: “numeric”, “factor”, “ordered”
Required Packages: mlr3, mlr3extralearners, C50
Parameters
| Id | Type | Default | Levels | Range |
| trials | integer | 1 | \([1, \infty)\) | |
| rules | logical | FALSE | TRUE, FALSE | - |
| costs | untyped | NULL | - | |
| subset | logical | TRUE | TRUE, FALSE | - |
| bands | integer | - | \([0, 1000]\) | |
| winnow | logical | FALSE | TRUE, FALSE | - |
| noGlobalPruning | logical | FALSE | TRUE, FALSE | - |
| CF | numeric | 0.25 | \([0, 1]\) | |
| minCases | integer | 2 | \([0, \infty)\) | |
| fuzzyThreshold | logical | FALSE | TRUE, FALSE | - |
| sample | numeric | 0 | \([0, 0.999]\) | |
| seed | integer | - | \((-\infty, \infty)\) | |
| earlyStopping | logical | TRUE | TRUE, FALSE | - |
| label | untyped | "outcome" | - | |
| na.action | untyped | "stats::na.pass" | - |
Super classes
mlr3::Learner -> mlr3::LearnerClassif -> LearnerClassifC50
Methods
Inherited methods
mlr3::Learner$base_learner()mlr3::Learner$configure()mlr3::Learner$encapsulate()mlr3::Learner$format()mlr3::Learner$help()mlr3::Learner$predict()mlr3::Learner$predict_newdata()mlr3::Learner$print()mlr3::Learner$reset()mlr3::Learner$selected_features()mlr3::Learner$train()mlr3::LearnerClassif$predict_newdata_fast()