Classification JRip Learner
mlr_learners_classif.JRip.Rd
Repeated Incremental Pruning to Produce Error Reduction.
Calls RWeka::JRip()
from RWeka.
Meta Information
Task type: “classif”
Predict Types: “response”, “prob”
Feature Types: “integer”, “numeric”, “factor”, “ordered”
Required Packages: mlr3, mlr3extralearners, RWeka
Parameters
Id | Type | Default | Levels | Range |
subset | untyped | - | - | |
na.action | untyped | - | - | |
F | integer | 3 | \([2, \infty)\) | |
N | numeric | 2 | \([0, \infty)\) | |
O | integer | 2 | \([1, \infty)\) | |
D | logical | FALSE | TRUE, FALSE | - |
S | integer | 1 | \([1, \infty)\) | |
E | logical | FALSE | TRUE, FALSE | - |
P | logical | FALSE | TRUE, FALSE | - |
output_debug_info | logical | FALSE | TRUE, FALSE | - |
do_not_check_capabilities | logical | FALSE | TRUE, FALSE | - |
num_decimal_places | integer | 2 | \([1, \infty)\) | |
batch_size | integer | 100 | \([1, \infty)\) | |
options | untyped | NULL | - |
Parameter changes
output_debug_info
:original id: output-debug-info
do_not_check_capabilities
:original id: do-not-check-capabilities
num_decimal_places
:original id: num-decimal-places
batch_size
:original id: batch-size
Reason for change: This learner contains changed ids of the following control arguments since their ids contain irregular pattern
References
Cohen, W W (1995). “Fast effective rule induction.” In Machine learning proceedings 1995, 115–123. Elsevier.
See also
as.data.table(mlr_learners)
for a table of available Learners in the running session (depending on the loaded packages).Chapter in the mlr3book: https://mlr3book.mlr-org.com/basics.html#learners
mlr3learners for a selection of recommended learners.
mlr3cluster for unsupervised clustering learners.
mlr3pipelines to combine learners with pre- and postprocessing steps.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
Super classes
mlr3::Learner
-> mlr3::LearnerClassif
-> LearnerClassifJRip
Examples
# Define the Learner
learner = mlr3::lrn("classif.JRip")
print(learner)
#> <LearnerClassifJRip:classif.JRip>: Propositional Rule Learner.
#> * Model: -
#> * Parameters: list()
#> * Packages: mlr3, mlr3extralearners, RWeka
#> * Predict Types: [response], prob
#> * Feature Types: integer, numeric, factor, ordered
#> * Properties: multiclass, twoclass
# Define a Task
task = mlr3::tsk("sonar")
# Create train and test set
ids = mlr3::partition(task)
# Train the learner on the training ids
learner$train(task, row_ids = ids$train)
print(learner$model)
#> JRIP rules:
#> ===========
#>
#> (V49 >= 0.0455) and (V37 <= 0.4441) => Class=M (47.0/4.0)
#> (V31 <= 0.356) and (V21 >= 0.581) => Class=M (16.0/3.0)
#> (V12 >= 0.2251) and (V27 >= 0.8787) => Class=M (9.0/1.0)
#> => Class=R (67.0/5.0)
#>
#> Number of Rules : 4
#>
# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)
# Score the predictions
predictions$score()
#> classif.ce
#> 0.2318841