Repeated Incremental Pruning to Produce Error Reduction.
Calls RWeka::JRip() from RWeka.
Meta Information
Task type: “classif”
Predict Types: “response”, “prob”
Feature Types: “integer”, “numeric”, “factor”, “ordered”
Required Packages: mlr3, mlr3extralearners, RWeka
Parameters
| Id | Type | Default | Levels | Range | 
| subset | untyped | - | - | |
| na.action | untyped | - | - | |
| F | integer | 3 | \([2, \infty)\) | |
| N | numeric | 2 | \([0, \infty)\) | |
| O | integer | 2 | \([1, \infty)\) | |
| D | logical | FALSE | TRUE, FALSE | - | 
| S | integer | 1 | \([1, \infty)\) | |
| E | logical | FALSE | TRUE, FALSE | - | 
| P | logical | FALSE | TRUE, FALSE | - | 
| output_debug_info | logical | FALSE | TRUE, FALSE | - | 
| do_not_check_capabilities | logical | FALSE | TRUE, FALSE | - | 
| num_decimal_places | integer | 2 | \([1, \infty)\) | |
| batch_size | integer | 100 | \([1, \infty)\) | |
| options | untyped | NULL | - | 
Parameter changes
output_debug_info:original id: output-debug-info
do_not_check_capabilities:original id: do-not-check-capabilities
num_decimal_places:original id: num-decimal-places
batch_size:original id: batch-size
Reason for change: This learner contains changed ids of the following control arguments since their ids contain irregular pattern
References
Cohen, W W (1995). “Fast effective rule induction.” In Machine learning proceedings 1995, 115–123. Elsevier.
See also
as.data.table(mlr_learners)for a table of available Learners in the running session (depending on the loaded packages).Chapter in the mlr3book: https://mlr3book.mlr-org.com/basics.html#learners
mlr3learners for a selection of recommended learners.
mlr3cluster for unsupervised clustering learners.
mlr3pipelines to combine learners with pre- and postprocessing steps.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
Super classes
mlr3::Learner -> mlr3::LearnerClassif -> LearnerClassifJRip
Methods
Inherited methods
mlr3::Learner$base_learner()mlr3::Learner$configure()mlr3::Learner$encapsulate()mlr3::Learner$format()mlr3::Learner$help()mlr3::Learner$predict()mlr3::Learner$predict_newdata()mlr3::Learner$print()mlr3::Learner$reset()mlr3::Learner$selected_features()mlr3::Learner$train()mlr3::LearnerClassif$predict_newdata_fast()
Method marshal()
Marshal the learner's model.
Arguments
...(any)
Additional arguments passed tomlr3::marshal_model().
Method unmarshal()
Unmarshal the learner's model.
Arguments
...(any)
Additional arguments passed tomlr3::unmarshal_model().
Examples
# Define the Learner
learner = lrn("classif.JRip")
print(learner)
#> 
#> ── <LearnerClassifJRip> (classif.JRip): Propositional Rule Learner. ────────────
#> • Model: -
#> • Parameters: list()
#> • Packages: mlr3, mlr3extralearners, and RWeka
#> • Predict Types: [response] and prob
#> • Feature Types: integer, numeric, factor, and ordered
#> • Encapsulation: none (fallback: -)
#> • Properties: marshal, multiclass, and twoclass
#> • Other settings: use_weights = 'error'
# Define a Task
task = tsk("sonar")
# Create train and test set
ids = partition(task)
# Train the learner on the training ids
learner$train(task, row_ids = ids$train)
print(learner$model)
#> JRIP rules:
#> ===========
#> 
#> (V12 <= 0.2237) and (V20 <= 0.5224) => Class=R (38.0/3.0)
#> (V48 <= 0.0755) and (V31 >= 0.4161) => Class=R (18.0/2.0)
#>  => Class=M (83.0/15.0)
#> 
#> Number of Rules : 3
#> 
# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)
# Score the predictions
predictions$score()
#> classif.ce 
#>  0.2463768