Skip to contents

Repeated Incremental Pruning to Produce Error Reduction. Calls RWeka::JRip() from RWeka.

Dictionary

This Learner can be instantiated via lrn():

lrn("classif.JRip")

Meta Information

  • Task type: “classif”

  • Predict Types: “response”, “prob”

  • Feature Types: “integer”, “numeric”, “factor”, “ordered”

  • Required Packages: mlr3, mlr3extralearners, RWeka

Parameters

IdTypeDefaultLevelsRange
subsetuntyped--
na.actionuntyped--
Finteger3\([2, \infty)\)
Nnumeric2\([0, \infty)\)
Ointeger2\([1, \infty)\)
DlogicalFALSETRUE, FALSE-
Sinteger1\([1, \infty)\)
ElogicalFALSETRUE, FALSE-
PlogicalFALSETRUE, FALSE-
output_debug_infologicalFALSETRUE, FALSE-
do_not_check_capabilitieslogicalFALSETRUE, FALSE-
num_decimal_placesinteger2\([1, \infty)\)
batch_sizeinteger100\([1, \infty)\)
optionsuntypedNULL-

Parameter changes

  • output_debug_info:

    • original id: output-debug-info

  • do_not_check_capabilities:

    • original id: do-not-check-capabilities

  • num_decimal_places:

    • original id: num-decimal-places

  • batch_size:

    • original id: batch-size

  • Reason for change: This learner contains changed ids of the following control arguments since their ids contain irregular pattern

References

Cohen, W W (1995). “Fast effective rule induction.” In Machine learning proceedings 1995, 115–123. Elsevier.

See also

Author

henrifnk

Super classes

mlr3::Learner -> mlr3::LearnerClassif -> LearnerClassifJRip

Methods

Inherited methods


Method new()

Creates a new instance of this R6 class.

Usage


Method clone()

The objects of this class are cloneable with this method.

Usage

LearnerClassifJRip$clone(deep = FALSE)

Arguments

deep

Whether to make a deep clone.

Examples

# Define the Learner
learner = mlr3::lrn("classif.JRip")
print(learner)
#> <LearnerClassifJRip:classif.JRip>: Propositional Rule Learner.
#> * Model: -
#> * Parameters: list()
#> * Packages: mlr3, mlr3extralearners, RWeka
#> * Predict Types:  [response], prob
#> * Feature Types: integer, numeric, factor, ordered
#> * Properties: multiclass, twoclass

# Define a Task
task = mlr3::tsk("sonar")

# Create train and test set
ids = mlr3::partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)
#> JRIP rules:
#> ===========
#> 
#> (V49 >= 0.0455) and (V37 <= 0.4441) => Class=M (47.0/4.0)
#> (V31 <= 0.356) and (V21 >= 0.581) => Class=M (16.0/3.0)
#> (V12 >= 0.2251) and (V27 >= 0.8787) => Class=M (9.0/1.0)
#>  => Class=R (67.0/5.0)
#> 
#> Number of Rules : 4
#> 


# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()
#> classif.ce 
#>  0.2318841