Skip to contents

One Rule classification algorithm that yields an extremely simple model. Calls RWeka::OneR() from RWeka.

Dictionary

This Learner can be instantiated via the dictionary mlr_learners or with the associated sugar function lrn():

mlr_learners$get("classif.OneR")
lrn("classif.OneR")

Meta Information

  • Task type: “classif”

  • Predict Types: “response”, “prob”

  • Feature Types: “integer”, “numeric”, “factor”, “ordered”

  • Required Packages: mlr3, mlr3extralearners, RWeka

Parameters

IdTypeDefaultLevelsRange
subsetuntyped--
na.actionuntyped--
Binteger6\([1, \infty)\)
output_debug_infologicalFALSETRUE, FALSE-
do_not_check_capabilitieslogicalFALSETRUE, FALSE-
num_decimal_placesinteger2\([1, \infty)\)
batch_sizeinteger100\([1, \infty)\)
optionsuntyped-

Parameter Changes

  • output_debug_info:

    • original id: output-debug-info

  • do_not_check_capabilities:

    • original id: do-not-check-capabilities

  • num_decimal_places:

    • original id: num-decimal-places

  • batch_size:

    • original id: batch-size

  • Reason for change: This learner contains changed ids of the following control arguments since their ids contain irregular pattern

References

Holte, C R (1993). “Very simple classification rules perform well on most commonly used datasets.” Machine learning, 11(1), 63--90.

See also

Author

henrifnk

Super classes

mlr3::Learner -> mlr3::LearnerClassif -> LearnerClassifOneR

Methods

Inherited methods


Method new()

Creates a new instance of this R6 class.

Usage


Method clone()

The objects of this class are cloneable with this method.

Usage

LearnerClassifOneR$clone(deep = FALSE)

Arguments

deep

Whether to make a deep clone.

Examples

learner = mlr3::lrn("classif.OneR")
print(learner)
#> <LearnerClassifOneR:classif.OneR>: One Rule
#> * Model: -
#> * Parameters: list()
#> * Packages: mlr3, mlr3extralearners, RWeka
#> * Predict Type: response
#> * Feature types: numeric, factor, ordered, integer
#> * Properties: multiclass, twoclass

# available parameters:
learner$param_set$ids()
#> [1] "subset"                    "na.action"                
#> [3] "B"                         "output_debug_info"        
#> [5] "do_not_check_capabilities" "num_decimal_places"       
#> [7] "batch_size"                "options"