Classification PART Learner
mlr_learners_classif.PART.Rd
Regression partition tree.
Calls RWeka::PART()
from RWeka.
Meta Information
Task type: “classif”
Predict Types: “response”, “prob”
Feature Types: “integer”, “numeric”, “factor”, “ordered”
Required Packages: mlr3, mlr3extralearners, RWeka
Parameters
Id | Type | Default | Levels | Range |
subset | untyped | - | - | |
na.action | untyped | - | - | |
C | numeric | 0.25 | \([2.22044604925031e-16, 1]\) | |
M | integer | 2 | \([1, \infty)\) | |
R | logical | FALSE | TRUE, FALSE | - |
N | integer | 3 | \([1, \infty)\) | |
B | logical | FALSE | TRUE, FALSE | - |
U | logical | FALSE | TRUE, FALSE | - |
J | logical | FALSE | TRUE, FALSE | - |
Q | integer | 1 | \([1, \infty)\) | |
doNotMakeSplitPointActualValue | logical | FALSE | TRUE, FALSE | - |
output_debug_info | logical | FALSE | TRUE, FALSE | - |
do_not_check_capabilities | logical | FALSE | TRUE, FALSE | - |
num_decimal_places | integer | 2 | \([1, \infty)\) | |
batch_size | integer | 100 | \([1, \infty)\) | |
options | untyped | NULL | - |
Custom mlr3 parameters
output_debug_info
:original id: output-debug-info
do_not_check_capabilities
:original id: do-not-check-capabilities
num_decimal_places
:original id: num-decimal-places
batch_size
:original id: batch-size
Reason for change: This learner contains changed ids of the following control arguments since their ids contain irregular pattern
References
Frank, Eibe, Witten, H I (1998). “Generating accurate rule sets without global optimization.”
See also
as.data.table(mlr_learners)
for a table of available Learners in the running session (depending on the loaded packages).Chapter in the mlr3book: https://mlr3book.mlr-org.com/basics.html#learners
mlr3learners for a selection of recommended learners.
mlr3cluster for unsupervised clustering learners.
mlr3pipelines to combine learners with pre- and postprocessing steps.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
Super classes
mlr3::Learner
-> mlr3::LearnerClassif
-> LearnerClassifPART
Examples
# Define the Learner
learner = mlr3::lrn("classif.PART")
print(learner)
#> <LearnerClassifPART:classif.PART>: Tree-based Model
#> * Model: -
#> * Parameters: list()
#> * Packages: mlr3, mlr3extralearners, RWeka
#> * Predict Types: [response], prob
#> * Feature Types: integer, numeric, factor, ordered
#> * Properties: missings, multiclass, twoclass
# Define a Task
task = mlr3::tsk("sonar")
# Create train and test set
ids = mlr3::partition(task)
# Train the learner on the training ids
learner$train(task, row_ids = ids$train)
print(learner$model)
#> PART decision list
#> ------------------
#>
#> V11 <= 0.197 AND
#> V52 <= 0.0237 AND
#> V7 <= 0.1398: R (47.0/1.0)
#>
#> V40 <= 0.6086 AND
#> V52 > 0.0065 AND
#> V15 <= 0.6646 AND
#> V48 > 0.0693: M (51.0)
#>
#> V20 <= 0.543: R (10.0)
#>
#> V34 <= 0.1969: M (10.0)
#>
#> V49 <= 0.0392 AND
#> V33 > 0.2544: M (10.0)
#>
#> : R (11.0)
#>
#> Number of Rules : 6
#>
# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)
# Score the predictions
predictions$score()
#> classif.ce
#> 0.3623188