BlockForest Classification Learner
Source:R/learner_blockForest_classif_blockforest.R
mlr_learners_classif.blockforest.RdRandom forests for blocks of clinical and omics covariate data.
Calls blockForest::blockfor() from package blockForest.
In this learner, only the trained forest object ($forest) is retained. The
optimized block-specific tuning parameters (paramvalues) and the biased OOB
error estimate (biased_oob_error_donotuse) are discarded, as they are either
not needed for downstream use or not reliable for performance estimation.
Initial parameter values
num.threadsis initialized to 1 to avoid conflicts with parallelization via future.
Meta Information
Task type: “classif”
Predict Types: “response”, “prob”
Feature Types: “logical”, “integer”, “numeric”, “factor”, “ordered”
Required Packages: mlr3, mlr3extralearners, blockForest
Parameters
| Id | Type | Default | Levels | Range |
| blocks | untyped | - | - | |
| block.method | character | BlockForest | BlockForest, RandomBlock, BlockVarSel, VarProb, SplitWeights | - |
| num.trees | integer | 2000 | \([1, \infty)\) | |
| mtry | untyped | NULL | - | |
| nsets | integer | 300 | \([1, \infty)\) | |
| num.trees.pre | integer | 1500 | \([1, \infty)\) | |
| splitrule | character | extratrees | extratrees, gini | - |
| always.select.block | integer | 0 | \([0, 1]\) | |
| importance | character | - | none, impurity, impurity_corrected, permutation | - |
| num.threads | integer | - | \([1, \infty)\) | |
| seed | integer | NULL | \((-\infty, \infty)\) | |
| verbose | logical | TRUE | TRUE, FALSE | - |
References
Hornung, R., Wright, N. M (2019). “Block Forests: Random forests for blocks of clinical and omics covariate data.” BMC Bioinformatics, 20(1), 1–17. doi:10.1186/s12859-019-2942-y , https://doi.org/10.1186/s12859-019-2942-y.
See also
as.data.table(mlr_learners)for a table of available Learners in the running session (depending on the loaded packages).Chapter in the mlr3book: https://mlr3book.mlr-org.com/basics.html#learners
mlr3learners for a selection of recommended learners.
mlr3cluster for unsupervised clustering learners.
mlr3pipelines to combine learners with pre- and postprocessing steps.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
Super classes
mlr3::Learner -> mlr3::LearnerClassif -> LearnerClassifBlockForest
Methods
Inherited methods
mlr3::Learner$base_learner()mlr3::Learner$configure()mlr3::Learner$encapsulate()mlr3::Learner$format()mlr3::Learner$help()mlr3::Learner$predict()mlr3::Learner$predict_newdata()mlr3::Learner$print()mlr3::Learner$reset()mlr3::Learner$selected_features()mlr3::Learner$train()mlr3::LearnerClassif$predict_newdata_fast()
Method importance()
The importance scores are extracted from the model slot variable.importance.
Returns
Named numeric().
Examples
# Define a Task
task = tsk("sonar")
# Create train and test set
ids = partition(task)
# check task's features
task$feature_names
#> [1] "V1" "V10" "V11" "V12" "V13" "V14" "V15" "V16" "V17" "V18" "V19" "V2"
#> [13] "V20" "V21" "V22" "V23" "V24" "V25" "V26" "V27" "V28" "V29" "V3" "V30"
#> [25] "V31" "V32" "V33" "V34" "V35" "V36" "V37" "V38" "V39" "V4" "V40" "V41"
#> [37] "V42" "V43" "V44" "V45" "V46" "V47" "V48" "V49" "V5" "V50" "V51" "V52"
#> [49] "V53" "V54" "V55" "V56" "V57" "V58" "V59" "V6" "V60" "V7" "V8" "V9"
# partition features to 2 blocks
blocks = list(bl1 = 1:42, bl2 = 43:60)
# define learner
learner = lrn("classif.blockforest", blocks = blocks,
importance = "permutation", nsets = 10, predict_type = "prob",
num.trees = 50, num.trees.pre = 10, splitrule = "gini")
# Train the learner on the training ids
learner$train(task, row_ids = ids$train)
# feature importance
learner$importance()
#> V11 V9 V10 V12 V13
#> 2.454902e-02 2.366452e-02 1.687761e-02 1.624936e-02 1.489039e-02
#> V48 V47 V6 V46 V5
#> 9.777321e-03 8.469035e-03 7.257167e-03 6.913725e-03 6.747194e-03
#> V21 V37 V17 V3 V28
#> 6.542115e-03 6.411039e-03 5.417669e-03 4.276806e-03 4.087938e-03
#> V32 V52 V4 V14 V22
#> 3.949635e-03 3.459736e-03 3.345575e-03 3.289882e-03 3.268576e-03
#> V30 V16 V49 V20 V27
#> 3.127276e-03 2.986849e-03 2.753817e-03 2.609756e-03 2.595735e-03
#> V23 V40 V51 V35 V36
#> 2.454451e-03 2.282744e-03 1.815142e-03 1.779020e-03 1.766542e-03
#> V26 V7 V59 V57 V29
#> 1.617453e-03 1.554055e-03 1.480852e-03 1.457648e-03 1.448707e-03
#> V33 V18 V43 V58 V60
#> 1.317857e-03 1.172505e-03 1.139360e-03 1.136732e-03 1.073980e-03
#> V50 V8 V2 V45 V24
#> 9.957591e-04 7.506568e-04 6.409246e-04 5.836982e-04 5.793871e-04
#> V1 V53 V19 V41 V56
#> 5.569320e-04 3.691990e-04 3.171481e-04 6.315789e-05 -1.401679e-04
#> V44 V54 V34 V55 V15
#> -1.932186e-04 -4.159785e-04 -5.184111e-04 -5.494147e-04 -5.731638e-04
#> V31 V25 V39 V38 V42
#> -5.850965e-04 -6.085620e-04 -8.354866e-04 -1.390856e-03 -2.192286e-03
# Make predictions for the test observations
pred = learner$predict(task, row_ids = ids$test)
pred
#>
#> ── <PredictionClassif> for 69 observations: ────────────────────────────────────
#> row_ids truth response prob.M prob.R
#> 1 R M 0.5999444 0.40005556
#> 4 R R 0.2932698 0.70673016
#> 9 R R 0.4750556 0.52494444
#> --- --- --- --- ---
#> 189 M M 0.7648889 0.23511111
#> 199 M M 0.9242222 0.07577778
#> 208 M M 0.6028333 0.39716667
# Score the predictions
pred$score()
#> classif.ce
#> 0.2173913