Skip to contents

Random forests for blocks of clinical and omics covariate data. Calls blockForest::blockfor() from package blockForest.

In this learner, only the trained forest object ($forest) is retained. The optimized block-specific tuning parameters (paramvalues) and the biased OOB error estimate (biased_oob_error_donotuse) are discarded, as they are either not needed for downstream use or not reliable for performance estimation.

Initial parameter values

  • num.threads is initialized to 1 to avoid conflicts with parallelization via future.

Dictionary

This Learner can be instantiated via lrn():

lrn("classif.blockforest")

Meta Information

  • Task type: “classif”

  • Predict Types: “response”, “prob”

  • Feature Types: “logical”, “integer”, “numeric”, “factor”, “ordered”

  • Required Packages: mlr3, mlr3extralearners, blockForest

Parameters

IdTypeDefaultLevelsRange
blocksuntyped--
block.methodcharacterBlockForestBlockForest, RandomBlock, BlockVarSel, VarProb, SplitWeights-
num.treesinteger2000\([1, \infty)\)
mtryuntypedNULL-
nsetsinteger300\([1, \infty)\)
num.trees.preinteger1500\([1, \infty)\)
splitrulecharacterextratreesextratrees, gini-
always.select.blockinteger0\([0, 1]\)
importancecharacter-none, impurity, impurity_corrected, permutation-
num.threadsinteger-\([1, \infty)\)
seedintegerNULL\((-\infty, \infty)\)
verboselogicalTRUETRUE, FALSE-

References

Hornung, R., Wright, N. M (2019). “Block Forests: Random forests for blocks of clinical and omics covariate data.” BMC Bioinformatics, 20(1), 1–17. doi:10.1186/s12859-019-2942-y , https://doi.org/10.1186/s12859-019-2942-y.

See also

Author

bblodfon

Super classes

mlr3::Learner -> mlr3::LearnerClassif -> LearnerClassifBlockForest

Methods

Inherited methods


Method new()

Creates a new instance of this R6 class.


Method importance()

The importance scores are extracted from the model slot variable.importance.

Usage

LearnerClassifBlockForest$importance()

Returns

Named numeric().


Method clone()

The objects of this class are cloneable with this method.

Usage

LearnerClassifBlockForest$clone(deep = FALSE)

Arguments

deep

Whether to make a deep clone.

Examples

# Define a Task
task = tsk("sonar")
# Create train and test set
ids = partition(task)
# check task's features
task$feature_names
#>  [1] "V1"  "V10" "V11" "V12" "V13" "V14" "V15" "V16" "V17" "V18" "V19" "V2" 
#> [13] "V20" "V21" "V22" "V23" "V24" "V25" "V26" "V27" "V28" "V29" "V3"  "V30"
#> [25] "V31" "V32" "V33" "V34" "V35" "V36" "V37" "V38" "V39" "V4"  "V40" "V41"
#> [37] "V42" "V43" "V44" "V45" "V46" "V47" "V48" "V49" "V5"  "V50" "V51" "V52"
#> [49] "V53" "V54" "V55" "V56" "V57" "V58" "V59" "V6"  "V60" "V7"  "V8"  "V9" 
# partition features to 2 blocks
blocks = list(bl1 = 1:42, bl2 = 43:60)
# define learner
learner = lrn("classif.blockforest", blocks = blocks,
              importance = "permutation", nsets = 10, predict_type = "prob",
              num.trees = 50, num.trees.pre = 10, splitrule = "gini")
# Train the learner on the training ids
learner$train(task, row_ids = ids$train)
# feature importance
learner$importance()
#>           V11           V12           V48            V9           V45 
#>  2.497309e-02  2.013613e-02  1.524494e-02  1.492450e-02  1.298735e-02 
#>           V49           V27           V10           V28           V20 
#>  9.841747e-03  9.519082e-03  8.634747e-03  7.862153e-03  6.980810e-03 
#>            V4           V36           V44           V47            V5 
#>  5.000582e-03  4.886950e-03  4.874886e-03  4.295315e-03  3.707697e-03 
#>           V51           V14            V1           V16           V37 
#>  3.648392e-03  3.531896e-03  3.406090e-03  3.174794e-03  3.055436e-03 
#>           V17           V57           V50           V46           V31 
#>  2.910812e-03  2.755931e-03  2.490050e-03  2.467654e-03  2.312021e-03 
#>           V35           V15           V23           V18            V8 
#>  2.288141e-03  2.238466e-03  2.141381e-03  1.920038e-03  1.823730e-03 
#>           V43           V19           V38           V60            V3 
#>  1.792389e-03  1.725331e-03  1.632219e-03  1.384392e-03  1.174497e-03 
#>           V21           V52           V25           V41           V58 
#>  1.146504e-03  1.144548e-03  8.575786e-04  8.485733e-04  7.468082e-04 
#>           V34           V24           V40            V7           V56 
#>  7.434729e-04  7.388462e-04  5.132828e-04  4.015458e-04  3.728602e-04 
#>           V22           V13           V39           V29           V42 
#>  2.457043e-04  2.279988e-04  7.624273e-05  0.000000e+00 -5.626979e-05 
#>           V54           V32           V53           V33           V55 
#> -2.105121e-04 -2.288889e-04 -3.261932e-04 -3.661763e-04 -4.507703e-04 
#>           V26            V2           V30           V59            V6 
#> -4.726261e-04 -9.799908e-04 -1.308163e-03 -1.478365e-03 -3.024109e-03 
# Make predictions for the test observations
pred = learner$predict(task, row_ids = ids$test)
pred
#> 
#> ── <PredictionClassif> for 69 observations: ────────────────────────────────────
#>  row_ids truth response    prob.M    prob.R
#>        4     R        R 0.4456905 0.5543095
#>        6     R        R 0.4380000 0.5620000
#>        8     R        M 0.6917778 0.3082222
#>      ---   ---      ---       ---       ---
#>      200     M        M 0.7397222 0.2602778
#>      205     M        M 0.6436667 0.3563333
#>      206     M        M 0.7914762 0.2085238
# Score the predictions
pred$score()
#> classif.ce 
#>  0.2463768