BlockForest Classification Learner
Source:R/learner_blockForest_classif_blockforest.R
mlr_learners_classif.blockforest.RdRandom forests for blocks of clinical and omics covariate data.
Calls blockForest::blockfor() from package blockForest.
In this learner, only the trained forest object ($forest) is retained. The
optimized block-specific tuning parameters (paramvalues) and the biased OOB
error estimate (biased_oob_error_donotuse) are discarded, as they are either
not needed for downstream use or not reliable for performance estimation.
Initial parameter values
num.threadsis initialized to 1 to avoid conflicts with parallelization via future.
Meta Information
Task type: “classif”
Predict Types: “response”, “prob”
Feature Types: “logical”, “integer”, “numeric”, “factor”, “ordered”
Required Packages: mlr3, mlr3extralearners, blockForest
Parameters
| Id | Type | Default | Levels | Range |
| blocks | untyped | - | - | |
| block.method | character | BlockForest | BlockForest, RandomBlock, BlockVarSel, VarProb, SplitWeights | - |
| num.trees | integer | 2000 | \([1, \infty)\) | |
| mtry | untyped | NULL | - | |
| nsets | integer | 300 | \([1, \infty)\) | |
| num.trees.pre | integer | 1500 | \([1, \infty)\) | |
| splitrule | character | extratrees | extratrees, gini | - |
| always.select.block | integer | 0 | \([0, 1]\) | |
| importance | character | - | none, impurity, impurity_corrected, permutation | - |
| num.threads | integer | - | \([1, \infty)\) | |
| seed | integer | NULL | \((-\infty, \infty)\) | |
| verbose | logical | TRUE | TRUE, FALSE | - |
References
Hornung, R., Wright, N. M (2019). “Block Forests: Random forests for blocks of clinical and omics covariate data.” BMC Bioinformatics, 20(1), 1–17. doi:10.1186/s12859-019-2942-y , https://doi.org/10.1186/s12859-019-2942-y.
See also
as.data.table(mlr_learners)for a table of available Learners in the running session (depending on the loaded packages).Chapter in the mlr3book: https://mlr3book.mlr-org.com/basics.html#learners
mlr3learners for a selection of recommended learners.
mlr3cluster for unsupervised clustering learners.
mlr3pipelines to combine learners with pre- and postprocessing steps.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
Super classes
mlr3::Learner -> mlr3::LearnerClassif -> LearnerClassifBlockForest
Methods
Inherited methods
mlr3::Learner$base_learner()mlr3::Learner$configure()mlr3::Learner$encapsulate()mlr3::Learner$format()mlr3::Learner$help()mlr3::Learner$predict()mlr3::Learner$predict_newdata()mlr3::Learner$print()mlr3::Learner$reset()mlr3::Learner$selected_features()mlr3::Learner$train()mlr3::LearnerClassif$predict_newdata_fast()
Method importance()
The importance scores are extracted from the model slot variable.importance.
Returns
Named numeric().
Examples
# Define a Task
task = tsk("sonar")
# Create train and test set
ids = partition(task)
# check task's features
task$feature_names
#> [1] "V1" "V10" "V11" "V12" "V13" "V14" "V15" "V16" "V17" "V18" "V19" "V2"
#> [13] "V20" "V21" "V22" "V23" "V24" "V25" "V26" "V27" "V28" "V29" "V3" "V30"
#> [25] "V31" "V32" "V33" "V34" "V35" "V36" "V37" "V38" "V39" "V4" "V40" "V41"
#> [37] "V42" "V43" "V44" "V45" "V46" "V47" "V48" "V49" "V5" "V50" "V51" "V52"
#> [49] "V53" "V54" "V55" "V56" "V57" "V58" "V59" "V6" "V60" "V7" "V8" "V9"
# partition features to 2 blocks
blocks = list(bl1 = 1:42, bl2 = 43:60)
# define learner
learner = lrn("classif.blockforest", blocks = blocks,
importance = "permutation", nsets = 10, predict_type = "prob",
num.trees = 50, num.trees.pre = 10, splitrule = "gini")
# Train the learner on the training ids
learner$train(task, row_ids = ids$train)
# feature importance
learner$importance()
#> V49 V9 V48 V51 V11
#> 1.709475e-02 1.584460e-02 1.574908e-02 1.404239e-02 9.684483e-03
#> V5 V12 V16 V58 V13
#> 4.910647e-03 4.710261e-03 4.519937e-03 4.148098e-03 4.093539e-03
#> V10 V36 V17 V52 V54
#> 3.837362e-03 3.591954e-03 2.545291e-03 2.518686e-03 2.390908e-03
#> V7 V6 V25 V19 V8
#> 2.242279e-03 2.209344e-03 2.206349e-03 2.142857e-03 2.095327e-03
#> V3 V1 V33 V39 V35
#> 1.901974e-03 1.714242e-03 1.615045e-03 1.431165e-03 1.379560e-03
#> V44 V46 V43 V53 V4
#> 1.283019e-03 1.269976e-03 1.214810e-03 1.139802e-03 8.851609e-04
#> V22 V42 V2 V28 V29
#> 8.764843e-04 8.578073e-04 8.406593e-04 8.281815e-04 7.576358e-04
#> V18 V20 V24 V14 V40
#> 6.859683e-04 5.349308e-04 4.081633e-04 3.826923e-04 3.733333e-04
#> V37 V21 V41 V38 V23
#> 8.422646e-05 1.045423e-05 -2.069231e-04 -2.402050e-04 -2.586924e-04
#> V15 V56 V32 V45 V27
#> -2.934354e-04 -3.065881e-04 -3.846154e-04 -6.227292e-04 -7.354926e-04
#> V31 V26 V57 V47 V34
#> -7.843137e-04 -9.105621e-04 -1.038715e-03 -1.124433e-03 -1.538462e-03
#> V59 V30 V60 V50 V55
#> -1.739074e-03 -1.892886e-03 -2.065104e-03 -2.186201e-03 -2.342850e-03
# Make predictions for the test observations
pred = learner$predict(task, row_ids = ids$test)
pred
#>
#> ── <PredictionClassif> for 69 observations: ────────────────────────────────────
#> row_ids truth response prob.M prob.R
#> 3 R M 0.5112857 0.4887143
#> 5 R M 0.5735952 0.4264048
#> 15 R R 0.3326746 0.6673254
#> --- --- --- --- ---
#> 202 M M 0.6684762 0.3315238
#> 207 M M 0.5566190 0.4433810
#> 208 M R 0.4398730 0.5601270
# Score the predictions
pred$score()
#> classif.ce
#> 0.2608696