BlockForest Classification Learner
Source:R/learner_blockForest_classif_blockforest.R
mlr_learners_classif.blockforest.RdRandom forests for blocks of clinical and omics covariate data.
Calls blockForest::blockfor() from package blockForest.
In this learner, only the trained forest object ($forest) is retained. The
optimized block-specific tuning parameters (paramvalues) and the biased OOB
error estimate (biased_oob_error_donotuse) are discarded, as they are either
not needed for downstream use or not reliable for performance estimation.
Initial parameter values
num.threadsis initialized to 1 to avoid conflicts with parallelization via future.
Meta Information
Task type: “classif”
Predict Types: “response”, “prob”
Feature Types: “logical”, “integer”, “numeric”, “factor”, “ordered”
Required Packages: mlr3, mlr3extralearners, blockForest
Parameters
| Id | Type | Default | Levels | Range |
| blocks | untyped | - | - | |
| block.method | character | BlockForest | BlockForest, RandomBlock, BlockVarSel, VarProb, SplitWeights | - |
| num.trees | integer | 2000 | \([1, \infty)\) | |
| mtry | untyped | NULL | - | |
| nsets | integer | 300 | \([1, \infty)\) | |
| num.trees.pre | integer | 1500 | \([1, \infty)\) | |
| splitrule | character | extratrees | extratrees, gini | - |
| always.select.block | integer | 0 | \([0, 1]\) | |
| importance | character | - | none, impurity, impurity_corrected, permutation | - |
| num.threads | integer | - | \([1, \infty)\) | |
| seed | integer | NULL | \((-\infty, \infty)\) | |
| verbose | logical | TRUE | TRUE, FALSE | - |
References
Hornung, R., Wright, N. M (2019). “Block Forests: Random forests for blocks of clinical and omics covariate data.” BMC Bioinformatics, 20(1), 1–17. doi:10.1186/s12859-019-2942-y , https://doi.org/10.1186/s12859-019-2942-y.
See also
as.data.table(mlr_learners)for a table of available Learners in the running session (depending on the loaded packages).Chapter in the mlr3book: https://mlr3book.mlr-org.com/basics.html#learners
mlr3learners for a selection of recommended learners.
mlr3cluster for unsupervised clustering learners.
mlr3pipelines to combine learners with pre- and postprocessing steps.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
Super classes
mlr3::Learner -> mlr3::LearnerClassif -> LearnerClassifBlockForest
Methods
Inherited methods
mlr3::Learner$base_learner()mlr3::Learner$configure()mlr3::Learner$encapsulate()mlr3::Learner$format()mlr3::Learner$help()mlr3::Learner$predict()mlr3::Learner$predict_newdata()mlr3::Learner$print()mlr3::Learner$reset()mlr3::Learner$selected_features()mlr3::Learner$train()mlr3::LearnerClassif$predict_newdata_fast()
Method importance()
The importance scores are extracted from the model slot variable.importance.
Returns
Named numeric().
Examples
# Define a Task
task = tsk("sonar")
# Create train and test set
ids = partition(task)
# check task's features
task$feature_names
#> [1] "V1" "V10" "V11" "V12" "V13" "V14" "V15" "V16" "V17" "V18" "V19" "V2"
#> [13] "V20" "V21" "V22" "V23" "V24" "V25" "V26" "V27" "V28" "V29" "V3" "V30"
#> [25] "V31" "V32" "V33" "V34" "V35" "V36" "V37" "V38" "V39" "V4" "V40" "V41"
#> [37] "V42" "V43" "V44" "V45" "V46" "V47" "V48" "V49" "V5" "V50" "V51" "V52"
#> [49] "V53" "V54" "V55" "V56" "V57" "V58" "V59" "V6" "V60" "V7" "V8" "V9"
# partition features to 2 blocks
blocks = list(bl1 = 1:42, bl2 = 43:60)
# define learner
learner = lrn("classif.blockforest", blocks = blocks,
importance = "permutation", nsets = 10, predict_type = "prob",
num.trees = 50, num.trees.pre = 10, splitrule = "gini")
# Train the learner on the training ids
learner$train(task, row_ids = ids$train)
# feature importance
learner$importance()
#> V11 V12 V10 V37 V49
#> 2.238917e-02 1.604112e-02 1.459613e-02 1.354693e-02 9.687466e-03
#> V20 V45 V46 V28 V13
#> 9.015286e-03 8.255062e-03 7.119012e-03 6.583454e-03 6.151740e-03
#> V17 V51 V8 V52 V36
#> 5.317813e-03 5.108081e-03 4.568024e-03 4.526447e-03 4.486032e-03
#> V47 V4 V3 V1 V24
#> 4.245443e-03 3.427578e-03 3.298307e-03 3.292488e-03 2.622311e-03
#> V23 V7 V9 V6 V16
#> 2.552003e-03 2.089711e-03 2.049245e-03 2.029000e-03 2.024306e-03
#> V44 V35 V29 V34 V31
#> 1.963153e-03 1.742719e-03 1.657085e-03 1.525383e-03 1.511646e-03
#> V59 V50 V48 V40 V25
#> 1.382436e-03 1.359083e-03 1.288965e-03 1.243132e-03 1.071545e-03
#> V43 V32 V21 V39 V15
#> 9.938099e-04 9.795918e-04 9.365882e-04 6.505538e-04 6.110876e-04
#> V14 V22 V41 V42 V19
#> 3.591097e-04 2.948007e-04 2.585922e-04 1.960655e-04 1.954807e-04
#> V60 V38 V55 V27 V56
#> 1.130475e-04 -2.278436e-05 -8.972200e-05 -1.113364e-04 -2.356627e-04
#> V2 V5 V54 V33 V26
#> -3.163036e-04 -5.433979e-04 -5.538411e-04 -5.719835e-04 -9.005723e-04
#> V18 V57 V53 V58 V30
#> -1.266065e-03 -1.454370e-03 -1.574677e-03 -1.698899e-03 -1.721054e-03
# Make predictions for the test observations
pred = learner$predict(task, row_ids = ids$test)
pred
#>
#> ── <PredictionClassif> for 69 observations: ────────────────────────────────────
#> row_ids truth response prob.M prob.R
#> 5 R M 0.5758016 0.4241984
#> 9 R M 0.5543333 0.4456667
#> 15 R R 0.3483730 0.6516270
#> --- --- --- --- ---
#> 206 M M 0.6764444 0.3235556
#> 207 M M 0.6318095 0.3681905
#> 208 M M 0.5586667 0.4413333
# Score the predictions
pred$score()
#> classif.ce
#> 0.1884058