BlockForest Classification Learner
Source:R/learner_blockForest_classif_blockforest.R
mlr_learners_classif.blockforest.RdRandom forests for blocks of clinical and omics covariate data.
Calls blockForest::blockfor() from package blockForest.
In this learner, only the trained forest object ($forest) is retained. The
optimized block-specific tuning parameters (paramvalues) and the biased OOB
error estimate (biased_oob_error_donotuse) are discarded, as they are either
not needed for downstream use or not reliable for performance estimation.
Initial parameter values
num.threadsis initialized to 1 to avoid conflicts with parallelization via future.
Meta Information
Task type: “classif”
Predict Types: “response”, “prob”
Feature Types: “logical”, “integer”, “numeric”, “factor”, “ordered”
Required Packages: mlr3, mlr3extralearners, blockForest
Parameters
| Id | Type | Default | Levels | Range |
| blocks | untyped | - | - | |
| block.method | character | BlockForest | BlockForest, RandomBlock, BlockVarSel, VarProb, SplitWeights | - |
| num.trees | integer | 2000 | \([1, \infty)\) | |
| mtry | untyped | NULL | - | |
| nsets | integer | 300 | \([1, \infty)\) | |
| num.trees.pre | integer | 1500 | \([1, \infty)\) | |
| splitrule | character | extratrees | extratrees, gini | - |
| always.select.block | integer | 0 | \([0, 1]\) | |
| importance | character | - | none, impurity, impurity_corrected, permutation | - |
| num.threads | integer | - | \([1, \infty)\) | |
| seed | integer | NULL | \((-\infty, \infty)\) | |
| verbose | logical | TRUE | TRUE, FALSE | - |
References
Hornung, R., Wright, N. M (2019). “Block Forests: Random forests for blocks of clinical and omics covariate data.” BMC Bioinformatics, 20(1), 1–17. doi:10.1186/s12859-019-2942-y , https://doi.org/10.1186/s12859-019-2942-y.
See also
as.data.table(mlr_learners)for a table of available Learners in the running session (depending on the loaded packages).Chapter in the mlr3book: https://mlr3book.mlr-org.com/basics.html#learners
mlr3learners for a selection of recommended learners.
mlr3cluster for unsupervised clustering learners.
mlr3pipelines to combine learners with pre- and postprocessing steps.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
Super classes
mlr3::Learner -> mlr3::LearnerClassif -> LearnerClassifBlockForest
Methods
Inherited methods
mlr3::Learner$base_learner()mlr3::Learner$configure()mlr3::Learner$encapsulate()mlr3::Learner$format()mlr3::Learner$help()mlr3::Learner$predict()mlr3::Learner$predict_newdata()mlr3::Learner$print()mlr3::Learner$reset()mlr3::Learner$selected_features()mlr3::Learner$train()mlr3::LearnerClassif$predict_newdata_fast()
Method importance()
The importance scores are extracted from the model slot variable.importance.
Returns
Named numeric().
Examples
# Define a Task
task = tsk("sonar")
# Create train and test set
ids = partition(task)
# check task's features
task$feature_names
#> [1] "V1" "V10" "V11" "V12" "V13" "V14" "V15" "V16" "V17" "V18" "V19" "V2"
#> [13] "V20" "V21" "V22" "V23" "V24" "V25" "V26" "V27" "V28" "V29" "V3" "V30"
#> [25] "V31" "V32" "V33" "V34" "V35" "V36" "V37" "V38" "V39" "V4" "V40" "V41"
#> [37] "V42" "V43" "V44" "V45" "V46" "V47" "V48" "V49" "V5" "V50" "V51" "V52"
#> [49] "V53" "V54" "V55" "V56" "V57" "V58" "V59" "V6" "V60" "V7" "V8" "V9"
# partition features to 2 blocks
blocks = list(bl1 = 1:42, bl2 = 43:60)
# define learner
learner = lrn("classif.blockforest", blocks = blocks,
importance = "permutation", nsets = 10, predict_type = "prob",
num.trees = 50, num.trees.pre = 10, splitrule = "gini")
# Train the learner on the training ids
learner$train(task, row_ids = ids$train)
# feature importance
learner$importance()
#> V11 V12 V48 V9 V45
#> 2.497309e-02 2.013613e-02 1.524494e-02 1.492450e-02 1.298735e-02
#> V49 V27 V10 V28 V20
#> 9.841747e-03 9.519082e-03 8.634747e-03 7.862153e-03 6.980810e-03
#> V4 V36 V44 V47 V5
#> 5.000582e-03 4.886950e-03 4.874886e-03 4.295315e-03 3.707697e-03
#> V51 V14 V1 V16 V37
#> 3.648392e-03 3.531896e-03 3.406090e-03 3.174794e-03 3.055436e-03
#> V17 V57 V50 V46 V31
#> 2.910812e-03 2.755931e-03 2.490050e-03 2.467654e-03 2.312021e-03
#> V35 V15 V23 V18 V8
#> 2.288141e-03 2.238466e-03 2.141381e-03 1.920038e-03 1.823730e-03
#> V43 V19 V38 V60 V3
#> 1.792389e-03 1.725331e-03 1.632219e-03 1.384392e-03 1.174497e-03
#> V21 V52 V25 V41 V58
#> 1.146504e-03 1.144548e-03 8.575786e-04 8.485733e-04 7.468082e-04
#> V34 V24 V40 V7 V56
#> 7.434729e-04 7.388462e-04 5.132828e-04 4.015458e-04 3.728602e-04
#> V22 V13 V39 V29 V42
#> 2.457043e-04 2.279988e-04 7.624273e-05 0.000000e+00 -5.626979e-05
#> V54 V32 V53 V33 V55
#> -2.105121e-04 -2.288889e-04 -3.261932e-04 -3.661763e-04 -4.507703e-04
#> V26 V2 V30 V59 V6
#> -4.726261e-04 -9.799908e-04 -1.308163e-03 -1.478365e-03 -3.024109e-03
# Make predictions for the test observations
pred = learner$predict(task, row_ids = ids$test)
pred
#>
#> ── <PredictionClassif> for 69 observations: ────────────────────────────────────
#> row_ids truth response prob.M prob.R
#> 4 R R 0.4456905 0.5543095
#> 6 R R 0.4380000 0.5620000
#> 8 R M 0.6917778 0.3082222
#> --- --- --- --- ---
#> 200 M M 0.7397222 0.2602778
#> 205 M M 0.6436667 0.3563333
#> 206 M M 0.7914762 0.2085238
# Score the predictions
pred$score()
#> classif.ce
#> 0.2463768