Gradient Boosted Decision Trees Classification Learner
Source:R/learner_catboost_classif_catboost.R
mlr_learners_classif.catboost.RdGradient boosting algorithm that also supports categorical data.
Calls catboost::catboost.train() from package 'catboost'.
Meta Information
Task type: “classif”
Predict Types: “response”, “prob”
Feature Types: “numeric”, “factor”, “ordered”
Required Packages: mlr3, mlr3extralearners, catboost
Parameters
| Id | Type | Default | Levels | Range |
| loss_function_twoclass | character | Logloss | Logloss, CrossEntropy | - |
| loss_function_multiclass | character | MultiClass | MultiClass, MultiClassOneVsAll | - |
| learning_rate | numeric | 0.03 | \([0.001, 1]\) | |
| random_seed | integer | 0 | \([0, \infty)\) | |
| l2_leaf_reg | numeric | 3 | \([0, \infty)\) | |
| bootstrap_type | character | - | Bayesian, Bernoulli, MVS, Poisson, No | - |
| bagging_temperature | numeric | 1 | \([0, \infty)\) | |
| subsample | numeric | - | \([0, 1]\) | |
| sampling_frequency | character | PerTreeLevel | PerTree, PerTreeLevel | - |
| sampling_unit | character | Object | Object, Group | - |
| mvs_reg | numeric | - | \([0, \infty)\) | |
| random_strength | numeric | 1 | \([0, \infty)\) | |
| depth | integer | 6 | \([1, 16]\) | |
| grow_policy | character | SymmetricTree | SymmetricTree, Depthwise, Lossguide | - |
| min_data_in_leaf | integer | 1 | \([1, \infty)\) | |
| max_leaves | integer | 31 | \([1, \infty)\) | |
| ignored_features | untyped | NULL | - | |
| one_hot_max_size | untyped | FALSE | - | |
| has_time | logical | FALSE | TRUE, FALSE | - |
| rsm | numeric | 1 | \([0.001, 1]\) | |
| nan_mode | character | Min | Min, Max | - |
| fold_permutation_block | integer | - | \([1, 256]\) | |
| leaf_estimation_method | character | - | Newton, Gradient, Exact | - |
| leaf_estimation_iterations | integer | - | \([1, \infty)\) | |
| leaf_estimation_backtracking | character | AnyImprovement | No, AnyImprovement, Armijo | - |
| fold_len_multiplier | numeric | 2 | \([1.001, \infty)\) | |
| approx_on_full_history | logical | TRUE | TRUE, FALSE | - |
| class_weights | untyped | - | - | |
| auto_class_weights | character | None | None, Balanced, SqrtBalanced | - |
| boosting_type | character | - | Ordered, Plain | - |
| boost_from_average | logical | - | TRUE, FALSE | - |
| langevin | logical | FALSE | TRUE, FALSE | - |
| diffusion_temperature | numeric | 10000 | \([0, \infty)\) | |
| score_function | character | Cosine | Cosine, L2, NewtonCosine, NewtonL2 | - |
| monotone_constraints | untyped | - | - | |
| feature_weights | untyped | - | - | |
| first_feature_use_penalties | untyped | - | - | |
| penalties_coefficient | numeric | 1 | \([0, \infty)\) | |
| per_object_feature_penalties | untyped | - | - | |
| model_shrink_rate | numeric | - | \((-\infty, \infty)\) | |
| model_shrink_mode | character | - | Constant, Decreasing | - |
| target_border | numeric | - | \((-\infty, \infty)\) | |
| border_count | integer | - | \([1, 65535]\) | |
| feature_border_type | character | GreedyLogSum | Median, Uniform, UniformAndQuantiles, MaxLogSum, MinEntropy, GreedyLogSum | - |
| per_float_feature_quantization | untyped | - | - | |
| classes_count | integer | - | \([1, \infty)\) | |
| thread_count | integer | 1 | \([-1, \infty)\) | |
| task_type | character | CPU | CPU, GPU | - |
| devices | untyped | - | - | |
| logging_level | character | Silent | Silent, Verbose, Info, Debug | - |
| metric_period | integer | 1 | \([1, \infty)\) | |
| train_dir | untyped | "catboost_info" | - | |
| model_size_reg | numeric | 0.5 | \([0, 1]\) | |
| allow_writing_files | logical | FALSE | TRUE, FALSE | - |
| save_snapshot | logical | FALSE | TRUE, FALSE | - |
| snapshot_file | untyped | - | - | |
| snapshot_interval | integer | 600 | \([1, \infty)\) | |
| simple_ctr | untyped | - | - | |
| combinations_ctr | untyped | - | - | |
| ctr_target_border_count | integer | - | \([1, 255]\) | |
| counter_calc_method | character | Full | SkipTest, Full | - |
| max_ctr_complexity | integer | - | \([1, \infty)\) | |
| ctr_leaf_count_limit | integer | - | \([1, \infty)\) | |
| store_all_simple_ctr | logical | FALSE | TRUE, FALSE | - |
| final_ctr_computation_mode | character | Default | Default, Skip | - |
| verbose | logical | FALSE | TRUE, FALSE | - |
| ntree_start | integer | 0 | \([0, \infty)\) | |
| ntree_end | integer | 0 | \([0, \infty)\) | |
| early_stopping_rounds | integer | - | \([1, \infty)\) | |
| eval_metric | untyped | - | - | |
| use_best_model | logical | - | TRUE, FALSE | - |
| iterations | integer | 1000 | \([1, \infty)\) |
Initial parameter values
logging_level:Actual default: "Verbose"
Adjusted default: "Silent"
Reason for change: consistent with other mlr3 learners
thread_count:Actual default: -1
Adjusted default: 1
Reason for change: consistent with other mlr3 learners
allow_writing_files:Actual default: TRUE
Adjusted default: FALSE
Reason for change: consistent with other mlr3 learners
save_snapshot:Actual default: TRUE
Adjusted default: FALSE
Reason for change: consistent with other mlr3 learners
Early stopping
Early stopping can be used to find the optimal number of boosting rounds.
Set early_stopping_rounds to an integer value to monitor the performance of the model on the validation set while training.
For information on how to configure the validation set, see the Validation section of mlr3::Learner.
References
Dorogush, Veronika A, Ershov, Vasily, Gulin, Andrey (2018). “CatBoost: gradient boosting with categorical features support.” arXiv preprint arXiv:1810.11363.
See also
as.data.table(mlr_learners)for a table of available Learners in the running session (depending on the loaded packages).Chapter in the mlr3book: https://mlr3book.mlr-org.com/basics.html#learners
mlr3learners for a selection of recommended learners.
mlr3cluster for unsupervised clustering learners.
mlr3pipelines to combine learners with pre- and postprocessing steps.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
Super classes
mlr3::Learner -> mlr3::LearnerClassif -> LearnerClassifCatboost
Active bindings
internal_valid_scoresThe last observation of the validation scores for all metrics. Extracted from
model$evaluation_loginternal_tuned_valuesReturns the early stopped iterations if
early_stopping_roundswas set during training.validateHow to construct the internal validation data. This parameter can be either
NULL, a ratio,"test", or"predefined".
Methods
Inherited methods
mlr3::Learner$base_learner()mlr3::Learner$configure()mlr3::Learner$encapsulate()mlr3::Learner$format()mlr3::Learner$help()mlr3::Learner$predict()mlr3::Learner$predict_newdata()mlr3::Learner$print()mlr3::Learner$reset()mlr3::Learner$selected_features()mlr3::Learner$train()mlr3::LearnerClassif$predict_newdata_fast()
Method importance()
The importance scores are calculated using
catboost.get_feature_importance,
setting type = "FeatureImportance", returned for 'all'.
Returns
Named numeric().
Examples
# Define the Learner
learner = lrn("classif.catboost",
iterations = 100)
print(learner)
#>
#> ── <LearnerClassifCatboost> (classif.catboost): Gradient Boosting ──────────────
#> • Model: -
#> • Parameters: loss_function_twoclass=Logloss,
#> loss_function_multiclass=MultiClass, thread_count=1, logging_level=Silent,
#> allow_writing_files=FALSE, save_snapshot=FALSE, iterations=100
#> • Validate: NULL
#> • Packages: mlr3, mlr3extralearners, and catboost
#> • Predict Types: [response] and prob
#> • Feature Types: numeric, factor, and ordered
#> • Encapsulation: none (fallback: -)
#> • Properties: importance, internal_tuning, missings, multiclass, twoclass,
#> validation, and weights
#> • Other settings: use_weights = 'use'
# Define a Task
task = tsk("sonar")
# Create train and test set
ids = partition(task)
# Train the learner on the training ids
learner$train(task, row_ids = ids$train)
print(learner$model)
#> CatBoost model (100 trees)
#> Loss function: Logloss
#> Fit to 60 feature(s)
print(learner$importance())
#> V11 V9 V12 V48 V36 V4 V17 V18
#> 9.4434117 8.6531025 8.0654706 5.0543597 3.4495968 3.0690512 3.0405914 3.0290924
#> V37 V16 V46 V23 V57 V45 V44 V15
#> 2.8633711 2.8570637 2.5286552 2.3062606 1.8756722 1.8375232 1.8294633 1.6353672
#> V1 V53 V28 V49 V13 V22 V21 V5
#> 1.5058714 1.4363497 1.4310224 1.4018995 1.3825243 1.3351998 1.3299898 1.3021354
#> V10 V26 V59 V55 V51 V27 V31 V6
#> 1.2711613 1.1461496 1.0999870 1.0762313 1.0502645 1.0486589 1.0306638 1.0208956
#> V7 V54 V58 V14 V25 V50 V2 V43
#> 0.9898938 0.9700196 0.9100156 0.8969297 0.8950844 0.8842934 0.8834740 0.8489900
#> V38 V39 V41 V33 V47 V35 V3 V19
#> 0.8324266 0.7419316 0.7306583 0.7289300 0.7281292 0.7077070 0.6927973 0.6894536
#> V8 V32 V29 V56 V40 V24 V30 V20
#> 0.6283510 0.5996608 0.5916481 0.5509557 0.5083031 0.4500314 0.4343841 0.4274628
#> V60 V42 V52 V34
#> 0.3979186 0.3720669 0.3350798 0.1663466
# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)
# Score the predictions
predictions$score()
#> classif.ce
#> 0.2608696