Classification Conditional Random Forest Learner
Source:R/learner_partykit_classif_cforest.R
mlr_learners_classif.cforest.RdA random forest based on conditional inference trees (ctree).
Calls partykit::cforest() from partykit.
Meta Information
Task type: “classif”
Predict Types: “response”, “prob”
Feature Types: “integer”, “numeric”, “factor”, “ordered”
Required Packages: mlr3, mlr3extralearners, partykit, sandwich, coin
Parameters
| Id | Type | Default | Levels | Range |
| ntree | integer | 500 | \([1, \infty)\) | |
| replace | logical | FALSE | TRUE, FALSE | - |
| fraction | numeric | 0.632 | \([0, 1]\) | |
| mtry | integer | - | \([0, \infty)\) | |
| mtryratio | numeric | - | \([0, 1]\) | |
| applyfun | untyped | - | - | |
| cores | integer | NULL | \((-\infty, \infty)\) | |
| trace | logical | FALSE | TRUE, FALSE | - |
| cluster | untyped | - | - | |
| scores | untyped | - | - | |
| teststat | character | quadratic | quadratic, maximum | - |
| splitstat | character | quadratic | quadratic, maximum | - |
| splittest | logical | FALSE | TRUE, FALSE | - |
| testtype | character | Univariate | Bonferroni, MonteCarlo, Univariate, Teststatistic | - |
| nmax | untyped | - | - | |
| pargs | untyped | - | - | |
| alpha | numeric | 0.05 | \([0, 1]\) | |
| mincriterion | numeric | 0 | \([0, 1]\) | |
| logmincriterion | numeric | 0 | \((-\infty, \infty)\) | |
| minsplit | integer | 20 | \([1, \infty)\) | |
| minbucket | integer | 7 | \([1, \infty)\) | |
| minprob | numeric | 0.01 | \([0, 1]\) | |
| stump | logical | FALSE | TRUE, FALSE | - |
| lookahead | logical | FALSE | TRUE, FALSE | - |
| MIA | logical | FALSE | TRUE, FALSE | - |
| nresample | integer | 9999 | \([1, \infty)\) | |
| tol | numeric | 1.490116e-08 | \([0, \infty)\) | |
| maxsurrogate | integer | 0 | \([0, \infty)\) | |
| numsurrogate | logical | FALSE | TRUE, FALSE | - |
| maxdepth | integer | Inf | \([0, \infty)\) | |
| multiway | logical | FALSE | TRUE, FALSE | - |
| splittry | integer | 2 | \([0, \infty)\) | |
| intersplit | logical | FALSE | TRUE, FALSE | - |
| majority | logical | FALSE | TRUE, FALSE | - |
| caseweights | logical | TRUE | TRUE, FALSE | - |
| saveinfo | logical | FALSE | TRUE, FALSE | - |
| update | logical | FALSE | TRUE, FALSE | - |
| splitflavour | character | ctree | ctree, exhaustive | - |
| maxvar | integer | - | \([1, \infty)\) | |
| OOB | logical | FALSE | TRUE, FALSE | - |
| simplify | logical | TRUE | TRUE, FALSE | - |
| scale | logical | TRUE | TRUE, FALSE | - |
| nperm | integer | 1 | \([0, \infty)\) | |
| risk | character | loglik | loglik, misclassification | - |
| conditional | logical | FALSE | TRUE, FALSE | - |
| threshold | numeric | 0.2 | \((-\infty, \infty)\) |
Custom mlr3 parameters
mtry:This hyperparameter can alternatively be set via the added hyperparameter
mtryratioasmtry = max(ceiling(mtryratio * n_features), 1). Note thatmtryandmtryratioare mutually exclusive.
References
Hothorn T, Zeileis A (2015). “partykit: A Modular Toolkit for Recursive Partytioning in R.” Journal of Machine Learning Research, 16(118), 3905-3909. http://jmlr.org/papers/v16/hothorn15a.html.
Hothorn T, Hornik K, Zeileis A (2006). “Unbiased Recursive Partitioning: A Conditional Inference Framework.” Journal of Computational and Graphical Statistics, 15(3), 651–674. doi:10.1198/106186006x133933 , https://doi.org/10.1198/106186006x133933.
See also
as.data.table(mlr_learners)for a table of available Learners in the running session (depending on the loaded packages).Chapter in the mlr3book: https://mlr3book.mlr-org.com/basics.html#learners
mlr3learners for a selection of recommended learners.
mlr3cluster for unsupervised clustering learners.
mlr3pipelines to combine learners with pre- and postprocessing steps.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
Super classes
mlr3::Learner -> mlr3::LearnerClassif -> LearnerClassifCForest
Methods
Inherited methods
mlr3::Learner$base_learner()mlr3::Learner$configure()mlr3::Learner$encapsulate()mlr3::Learner$format()mlr3::Learner$help()mlr3::Learner$predict()mlr3::Learner$predict_newdata()mlr3::Learner$print()mlr3::Learner$reset()mlr3::Learner$selected_features()mlr3::Learner$train()mlr3::LearnerClassif$predict_newdata_fast()
Method oob_error()
The importance scores are calculated using partykit::varimp().
The out-of-bag error, calculated using the OOB predictions from
partykit.