Classification Conditional Inference Tree Learner
mlr_learners_classif.ctree.Rd
Classification Partition Tree where a significance test is used to determine the univariate
splits. Calls partykit::ctree()
from partykit.
Meta Information
Task type: “classif”
Predict Types: “response”, “prob”
Feature Types: “integer”, “numeric”, “factor”, “ordered”
Required Packages: mlr3, mlr3extralearners, partykit, sandwich, coin
Parameters
Id | Type | Default | Levels | Range |
teststat | character | quadratic | quadratic, maximum | - |
splitstat | character | quadratic | quadratic, maximum | - |
splittest | logical | FALSE | TRUE, FALSE | - |
testtype | character | Bonferroni | Bonferroni, MonteCarlo, Univariate, Teststatistic | - |
nmax | untyped | - | - | |
alpha | numeric | 0.05 | \([0, 1]\) | |
mincriterion | numeric | 0.95 | \([0, 1]\) | |
logmincriterion | numeric | - | \((-\infty, \infty)\) | |
minsplit | integer | 20 | \([1, \infty)\) | |
minbucket | integer | 7 | \([1, \infty)\) | |
minprob | numeric | 0.01 | \([0, 1]\) | |
stump | logical | FALSE | TRUE, FALSE | - |
lookahead | logical | FALSE | TRUE, FALSE | - |
MIA | logical | FALSE | TRUE, FALSE | - |
nresample | integer | 9999 | \([1, \infty)\) | |
tol | numeric | - | \([0, \infty)\) | |
maxsurrogate | integer | 0 | \([0, \infty)\) | |
numsurrogate | logical | FALSE | TRUE, FALSE | - |
mtry | integer | Inf | \([0, \infty)\) | |
maxdepth | integer | Inf | \([0, \infty)\) | |
multiway | logical | FALSE | TRUE, FALSE | - |
splittry | integer | 2 | \([0, \infty)\) | |
intersplit | logical | FALSE | TRUE, FALSE | - |
majority | logical | FALSE | TRUE, FALSE | - |
caseweights | logical | FALSE | TRUE, FALSE | - |
maxvar | integer | - | \([1, \infty)\) | |
applyfun | untyped | - | - | |
cores | integer | NULL | \((-\infty, \infty)\) | |
saveinfo | logical | TRUE | TRUE, FALSE | - |
update | logical | FALSE | TRUE, FALSE | - |
splitflavour | character | ctree | ctree, exhaustive | - |
offset | untyped | - | - | |
cluster | untyped | - | - | |
scores | untyped | - | - | |
doFit | logical | TRUE | TRUE, FALSE | - |
maxpts | integer | 25000 | \((-\infty, \infty)\) | |
abseps | numeric | 0.001 | \([0, \infty)\) | |
releps | numeric | 0 | \([0, \infty)\) |
References
Hothorn T, Zeileis A (2015). “partykit: A Modular Toolkit for Recursive Partytioning in R.” Journal of Machine Learning Research, 16(118), 3905-3909. http://jmlr.org/papers/v16/hothorn15a.html.
Hothorn T, Hornik K, Zeileis A (2006). “Unbiased Recursive Partitioning: A Conditional Inference Framework.” Journal of Computational and Graphical Statistics, 15(3), 651–674. doi:10.1198/106186006x133933 , https://doi.org/10.1198/106186006x133933.
See also
as.data.table(mlr_learners)
for a table of available Learners in the running session (depending on the loaded packages).Chapter in the mlr3book: https://mlr3book.mlr-org.com/basics.html#learners
mlr3learners for a selection of recommended learners.
mlr3cluster for unsupervised clustering learners.
mlr3pipelines to combine learners with pre- and postprocessing steps.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
Super classes
mlr3::Learner
-> mlr3::LearnerClassif
-> LearnerClassifCTree
Examples
# Define the Learner
learner = mlr3::lrn("classif.ctree")
print(learner)
#> <LearnerClassifCTree:classif.ctree>: Conditional Inference Tree
#> * Model: -
#> * Parameters: list()
#> * Packages: mlr3, mlr3extralearners, partykit, sandwich, coin
#> * Predict Types: [response], prob
#> * Feature Types: integer, numeric, factor, ordered
#> * Properties: multiclass, twoclass, weights
# Define a Task
task = mlr3::tsk("sonar")
# Create train and test set
ids = mlr3::partition(task)
# Train the learner on the training ids
learner$train(task, row_ids = ids$train)
print(learner$model)
#>
#> Model formula:
#> Class ~ V1 + V10 + V11 + V12 + V13 + V14 + V15 + V16 + V17 +
#> V18 + V19 + V2 + V20 + V21 + V22 + V23 + V24 + V25 + V26 +
#> V27 + V28 + V29 + V3 + V30 + V31 + V32 + V33 + V34 + V35 +
#> V36 + V37 + V38 + V39 + V4 + V40 + V41 + V42 + V43 + V44 +
#> V45 + V46 + V47 + V48 + V49 + V5 + V50 + V51 + V52 + V53 +
#> V54 + V55 + V56 + V57 + V58 + V59 + V6 + V60 + V7 + V8 +
#> V9
#>
#> Fitted party:
#> [1] root
#> | [2] V49 <= 0.0272: R (n = 33, err = 18.2%)
#> | [3] V49 > 0.0272: M (n = 106, err = 30.2%)
#>
#> Number of inner nodes: 1
#> Number of terminal nodes: 2
# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)
# Score the predictions
predictions$score()
#> classif.ce
#> 0.4637681