Classification Decision Table Learner
Source:R/learner_RWeka_classif_decision_table.R
mlr_learners_classif.decision_table.RdSimple Decision Table majority classifier.
Calls RWeka::make_Weka_classifier() from RWeka.
Initial parameter values
E:Has only 2 out of 4 original evaluation measures : acc and auc with acc being the default
Reason for change: this learner should only contain evaluation measures appropriate for classification tasks
Custom mlr3 parameters
output_debug_info:original id: output-debug-info
do_not_check_capabilities:original id: do-not-check-capabilities
num_decimal_places:original id: num-decimal-places
batch_size:original id: batch-size
P_best:original id: P
D_best:original id: D
N_best:original id: N
S_best:original id: S
Reason for change: This learner contains changed ids of the following control arguments since their ids contain irregular pattern
Parameters
| Id | Type | Default | Levels | Range |
| subset | untyped | - | - | |
| na.action | untyped | - | - | |
| S | character | BestFirst | BestFirst, GreedyStepwise | - |
| X | integer | 1 | \((-\infty, \infty)\) | |
| E | character | acc | acc, auc | - |
| I | logical | - | TRUE, FALSE | - |
| R | logical | - | TRUE, FALSE | - |
| output_debug_info | logical | FALSE | TRUE, FALSE | - |
| do_not_check_capabilities | logical | FALSE | TRUE, FALSE | - |
| num_decimal_places | integer | 2 | \([1, \infty)\) | |
| batch_size | integer | 100 | \([1, \infty)\) | |
| P_best | untyped | - | - | |
| D_best | character | 1 | 0, 1, 2 | - |
| N_best | integer | - | \((-\infty, \infty)\) | |
| S_best | integer | 1 | \((-\infty, \infty)\) | |
| options | untyped | NULL | - |
References
Kohavi R (1995). “The Power of Decision Tables.” In 8th European Conference on Machine Learning, 174–189.
See also
as.data.table(mlr_learners)for a table of available Learners in the running session (depending on the loaded packages).Chapter in the mlr3book: https://mlr3book.mlr-org.com/basics.html#learners
mlr3learners for a selection of recommended learners.
mlr3cluster for unsupervised clustering learners.
mlr3pipelines to combine learners with pre- and postprocessing steps.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
Super classes
mlr3::Learner -> mlr3::LearnerClassif -> LearnerClassifDecisionTable
Methods
Inherited methods
mlr3::Learner$base_learner()mlr3::Learner$configure()mlr3::Learner$encapsulate()mlr3::Learner$format()mlr3::Learner$help()mlr3::Learner$predict()mlr3::Learner$predict_newdata()mlr3::Learner$print()mlr3::Learner$reset()mlr3::Learner$selected_features()mlr3::Learner$train()mlr3::LearnerClassif$predict_newdata_fast()
Method marshal()
Marshal the learner's model.
Arguments
...(any)
Additional arguments passed tomlr3::marshal_model().
Method unmarshal()
Unmarshal the learner's model.
Arguments
...(any)
Additional arguments passed tomlr3::unmarshal_model().
Examples
# Define the Learner
learner = lrn("classif.decision_table")
print(learner)
#>
#> ── <LearnerClassifDecisionTable> (classif.decision_table): Decision Table ──────
#> • Model: -
#> • Parameters: E=acc
#> • Packages: mlr3 and RWeka
#> • Predict Types: [response] and prob
#> • Feature Types: logical, integer, numeric, factor, and ordered
#> • Encapsulation: none (fallback: -)
#> • Properties: marshal, missings, multiclass, and twoclass
#> • Other settings: use_weights = 'error'
# Define a Task
task = tsk("sonar")
# Create train and test set
ids = partition(task)
# Train the learner on the training ids
learner$train(task, row_ids = ids$train)
print(learner$model)
#> Decision Table:
#>
#> Number of training instances: 139
#> Number of Rules : 26
#> Non matches covered by Majority class.
#> Best first.
#> Start set: no attributes
#> Search direction: forward
#> Stale search after 5 node expansions
#> Total number of subsets evaluated: 561
#> Merit of best subset found: 86.331
#> Evaluation (for feature selection): CV (leave one out)
#> Feature set: 2,3,4,35,40,1
# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)
# Score the predictions
predictions$score()
#> classif.ce
#> 0.3333333