Classification Neural Network Learner
Source:R/learner_fastai_classif_fastai.R
mlr_learners_classif.fastai.RdSimple and fast neural nets for tabular data classification.
Calls fastai::tabular_learner() from package fastai.
Installation
The Python dependencies are automatically installed via reticulate::py_require().
See Installing Python Dependencies for more details.
You can manually specify a virtual environment by calling reticulate::use_virtualenv() prior to calling the $train() function.
In this virtual environment, the fastai package and its dependencies must be installed.
Saving a Learner
In order to save a lrn("classif.fastai") for later usage, it is necessary to call the $marshal() method on the Learner before writing it to disk,
as the object will otherwise not be saved correctly.
After loading a marshaled lrn("classif.fastai") into R again, you then need to call $unmarshal() to transform it into a useable state.
Initial parameter values
n_epoch: Needs to be set forfastai::fit()to work. If no value is given, it is set to 5.eval_metric: Needs to be set forfastai::predict()to work. If no value is given, it is set tofastai::accuracy().
Meta Information
Task type: “classif”
Predict Types: “response”, “prob”
Feature Types: “logical”, “integer”, “numeric”, “factor”, “ordered”
Required Packages: mlr3, mlr3extralearners, fastai, reticulate
Parameters
| Id | Type | Default | Levels | Range |
| act_cls | untyped | - | - | |
| bn_cont | logical | TRUE | TRUE, FALSE | - |
| bn_final | logical | FALSE | TRUE, FALSE | - |
| drop_last | logical | FALSE | TRUE, FALSE | - |
| embed_p | numeric | 0 | \([0, 1]\) | |
| emb_szs | untyped | NULL | - | |
| n_epoch | integer | 5 | \([1, \infty)\) | |
| eval_metric | untyped | - | - | |
| layers | untyped | - | - | |
| loss_func | untyped | - | - | |
| lr | numeric | 0.001 | \([0, \infty)\) | |
| metrics | untyped | - | - | |
| n_out | integer | - | \((-\infty, \infty)\) | |
| num_workers | integer | - | \((-\infty, \infty)\) | |
| opt_func | untyped | - | - | |
| patience | integer | 1 | \([1, \infty)\) | |
| pin_memory | logical | TRUE | TRUE, FALSE | - |
| procs | untyped | NULL | - | |
| ps | untyped | NULL | - | |
| shuffle | logical | FALSE | TRUE, FALSE | - |
| train_bn | logical | TRUE | TRUE, FALSE | - |
| wd | integer | - | \([0, \infty)\) | |
| wd_bn_bias | logical | FALSE | TRUE, FALSE | - |
| use_bn | logical | TRUE | TRUE, FALSE | - |
| y_range | untyped | NULL | - | |
| bs | integer | 50 | \((-\infty, \infty)\) |
References
Howard, Jeremy, Gugger, Sylvain (2020). “Fastai: A Layered API for Deep Learning.” Information, 11(2), 108. ISSN 2078-2489, doi:10.3390/info11020108 .
See also
as.data.table(mlr_learners)for a table of available Learners in the running session (depending on the loaded packages).Chapter in the mlr3book: https://mlr3book.mlr-org.com/basics.html#learners
mlr3learners for a selection of recommended learners.
mlr3cluster for unsupervised clustering learners.
mlr3pipelines to combine learners with pre- and postprocessing steps.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
Super classes
mlr3::Learner -> mlr3::LearnerClassif -> LearnerClassifFastai
Active bindings
internal_valid_scores(named
list()orNULL) The validation scores extracted fromeval_protocolwhich itself is set by fitting thefastai::tab_learner. If early stopping is activated, this contains the validation scores of the model for the optimaln_epoch, otherwise then_epochfor the final model.internal_tuned_values(named
list()orNULL) If early stopping is activated, this returns a list withn_epoch, which is the last epoch that yielded improvement w.r.t. thepatience, extracted bymax(eval_protocol$epoch)+1validate(
numeric(1)orcharacter(1)orNULL) How to construct the internal validation data. This parameter can be eitherNULL, a ratio,"test", or"predefined".marshaled(
logical(1)) Whether the learner has been marshaled.
Methods
Inherited methods
mlr3::Learner$base_learner()mlr3::Learner$configure()mlr3::Learner$encapsulate()mlr3::Learner$format()mlr3::Learner$help()mlr3::Learner$predict()mlr3::Learner$predict_newdata()mlr3::Learner$print()mlr3::Learner$reset()mlr3::Learner$selected_features()mlr3::Learner$train()mlr3::LearnerClassif$predict_newdata_fast()
Method marshal()
Marshal the learner's model.
Arguments
...(any)
Additional arguments passed tomlr3::marshal_model().
Method unmarshal()
Unmarshal the learner's model.
Arguments
...(any)
Additional arguments passed tomlr3::marshal_model().