Skip to contents

Gradient Boosting Classification Algorithm. Calls gbm::gbm() from gbm.

Dictionary

This Learner can be instantiated via lrn():

lrn("classif.gbm")

Meta Information

  • Task type: “classif”

  • Predict Types: “response”, “prob”

  • Feature Types: “integer”, “numeric”, “factor”, “ordered”

  • Required Packages: mlr3, mlr3extralearners, gbm

Parameters

IdTypeDefaultLevelsRange
distributioncharacterbernoullibernoulli, adaboost, huberized, multinomial-
n.treesinteger100\([1, \infty)\)
interaction.depthinteger1\([1, \infty)\)
n.minobsinnodeinteger10\([1, \infty)\)
shrinkagenumeric0.001\([0, \infty)\)
bag.fractionnumeric0.5\([0, 1]\)
train.fractionnumeric1\([0, 1]\)
cv.foldsinteger0\((-\infty, \infty)\)
keep.datalogicalFALSETRUE, FALSE-
verboselogicalFALSETRUE, FALSE-
n.coresinteger1\((-\infty, \infty)\)
var.monotoneuntyped--

Initial parameter values

  • keep.data is initialized to FALSE to save memory.

  • n.cores is initialized to 1 to avoid conflicts with parallelization through future.

References

Friedman, H J (2002). “Stochastic gradient boosting.” Computational statistics & data analysis, 38(4), 367–378.

See also

Author

be-marc

Super classes

mlr3::Learner -> mlr3::LearnerClassif -> LearnerClassifGBM

Methods

Inherited methods


Method new()

Creates a new instance of this R6 class.

Usage


Method importance()

The importance scores are extracted by gbm::relative.influence() from the model.

Usage

LearnerClassifGBM$importance()

Returns

Named numeric().


Method clone()

The objects of this class are cloneable with this method.

Usage

LearnerClassifGBM$clone(deep = FALSE)

Arguments

deep

Whether to make a deep clone.

Examples

# Define the Learner
learner = mlr3::lrn("classif.gbm")
print(learner)
#> <LearnerClassifGBM:classif.gbm>: Gradient Boosting
#> * Model: -
#> * Parameters: keep.data=FALSE, n.cores=1
#> * Packages: mlr3, mlr3extralearners, gbm
#> * Predict Types:  [response], prob
#> * Feature Types: integer, numeric, factor, ordered
#> * Properties: importance, missings, twoclass, weights

# Define a Task
task = mlr3::tsk("sonar")

# Create train and test set
ids = mlr3::partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)
#> Distribution not specified, assuming bernoulli ...

print(learner$model)
#> gbm::gbm(formula = f, data = data, keep.data = FALSE, n.cores = 1L)
#> A gradient boosted model with bernoulli loss function.
#> 100 iterations were performed.
#> There were 60 predictors of which 39 had non-zero influence.
print(learner$importance())
#>        V12        V48        V11        V51        V45        V37        V21 
#> 18.6844916 15.1283868 11.3279469  8.4894234  6.9518765  6.8098292  6.2173327 
#>        V49        V36         V4         V9        V55        V16        V23 
#>  6.0563914  4.2961984  4.1661412  3.6647097  3.2065480  3.1293482  2.9744827 
#>        V31        V27        V40        V43         V3        V24        V20 
#>  2.3682134  2.2984139  1.6630253  1.6187893  1.4696542  1.4652657  1.3673705 
#>        V54         V8        V32        V52         V6        V58        V29 
#>  1.3279936  1.2763909  1.1721137  1.1395817  1.1151731  1.0229887  0.9938030 
#>        V19        V30        V56        V47        V53        V39        V46 
#>  0.9934754  0.9314035  0.8154689  0.7930020  0.7410591  0.6559646  0.5317565 
#>        V44        V59        V13        V50         V1        V10        V14 
#>  0.5249986  0.4833881  0.4061616  0.2990604  0.0000000  0.0000000  0.0000000 
#>        V15        V17        V18         V2        V22        V25        V26 
#>  0.0000000  0.0000000  0.0000000  0.0000000  0.0000000  0.0000000  0.0000000 
#>        V28        V33        V34        V35        V38        V41        V42 
#>  0.0000000  0.0000000  0.0000000  0.0000000  0.0000000  0.0000000  0.0000000 
#>         V5        V57        V60         V7 
#>  0.0000000  0.0000000  0.0000000  0.0000000 

# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()
#> classif.ce 
#>  0.2028986