Gradient Boosting Classification Learner
mlr_learners_classif.gbm.Rd
Gradient Boosting Classification Algorithm.
Calls gbm::gbm()
from gbm.
Meta Information
Task type: “classif”
Predict Types: “response”, “prob”
Feature Types: “integer”, “numeric”, “factor”, “ordered”
Required Packages: mlr3, mlr3extralearners, gbm
Parameters
Id | Type | Default | Levels | Range |
distribution | character | bernoulli | bernoulli, adaboost, huberized, multinomial | - |
n.trees | integer | 100 | \([1, \infty)\) | |
interaction.depth | integer | 1 | \([1, \infty)\) | |
n.minobsinnode | integer | 10 | \([1, \infty)\) | |
shrinkage | numeric | 0.001 | \([0, \infty)\) | |
bag.fraction | numeric | 0.5 | \([0, 1]\) | |
train.fraction | numeric | 1 | \([0, 1]\) | |
cv.folds | integer | 0 | \((-\infty, \infty)\) | |
keep.data | logical | FALSE | TRUE, FALSE | - |
verbose | logical | FALSE | TRUE, FALSE | - |
n.cores | integer | 1 | \((-\infty, \infty)\) | |
var.monotone | untyped | - | - |
Initial parameter values
keep.data
is initialized toFALSE
to save memory.n.cores
is initialized to 1 to avoid conflicts with parallelization through future.
References
Friedman, H J (2002). “Stochastic gradient boosting.” Computational statistics & data analysis, 38(4), 367–378.
See also
as.data.table(mlr_learners)
for a table of available Learners in the running session (depending on the loaded packages).Chapter in the mlr3book: https://mlr3book.mlr-org.com/basics.html#learners
mlr3learners for a selection of recommended learners.
mlr3cluster for unsupervised clustering learners.
mlr3pipelines to combine learners with pre- and postprocessing steps.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
Super classes
mlr3::Learner
-> mlr3::LearnerClassif
-> LearnerClassifGBM
Methods
Method importance()
The importance scores are extracted by gbm::relative.influence()
from
the model.
Returns
Named numeric()
.
Examples
# Define the Learner
learner = mlr3::lrn("classif.gbm")
print(learner)
#> <LearnerClassifGBM:classif.gbm>: Gradient Boosting
#> * Model: -
#> * Parameters: keep.data=FALSE, n.cores=1
#> * Packages: mlr3, mlr3extralearners, gbm
#> * Predict Types: [response], prob
#> * Feature Types: integer, numeric, factor, ordered
#> * Properties: importance, missings, twoclass, weights
# Define a Task
task = mlr3::tsk("sonar")
# Create train and test set
ids = mlr3::partition(task)
# Train the learner on the training ids
learner$train(task, row_ids = ids$train)
#> Distribution not specified, assuming bernoulli ...
print(learner$model)
#> gbm::gbm(formula = f, data = data, keep.data = FALSE, n.cores = 1L)
#> A gradient boosted model with bernoulli loss function.
#> 100 iterations were performed.
#> There were 60 predictors of which 43 had non-zero influence.
print(learner$importance())
#> V12 V48 V36 V27 V45 V51 V16
#> 16.7397716 11.8165545 10.6624316 7.9966398 7.7652813 6.7988762 6.0229066
#> V11 V31 V49 V13 V52 V40 V50
#> 5.6529177 4.7801222 4.3438827 3.8044212 3.3517559 2.9061396 2.7726882
#> V8 V4 V37 V17 V9 V10 V57
#> 2.6853690 2.6668349 2.6189212 2.4142035 2.0955166 1.8057338 1.7415331
#> V55 V21 V43 V28 V1 V39 V19
#> 1.6741420 1.5020687 1.3687778 1.3683704 1.2865753 1.2225118 1.1211917
#> V15 V54 V23 V59 V29 V18 V14
#> 1.1151965 0.8873069 0.8392636 0.7658783 0.7566078 0.6574688 0.5859203
#> V42 V22 V60 V58 V3 V44 V6
#> 0.5542861 0.5319201 0.4895127 0.4870231 0.4562240 0.4210477 0.4127275
#> V20 V2 V24 V25 V26 V30 V32
#> 0.3607090 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
#> V33 V34 V35 V38 V41 V46 V47
#> 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
#> V5 V53 V56 V7
#> 0.0000000 0.0000000 0.0000000 0.0000000
# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)
# Score the predictions
predictions$score()
#> classif.ce
#> 0.1014493