Gradient Boosting Classification Learner
mlr_learners_classif.gbm.Rd
Gradient Boosting Classification Algorithm.
Calls gbm::gbm()
from gbm.
Meta Information
Task type: “classif”
Predict Types: “response”, “prob”
Feature Types: “integer”, “numeric”, “factor”, “ordered”
Required Packages: mlr3, mlr3extralearners, gbm
Parameters
Id | Type | Default | Levels | Range |
distribution | character | bernoulli | bernoulli, adaboost, huberized, multinomial | - |
n.trees | integer | 100 | \([1, \infty)\) | |
interaction.depth | integer | 1 | \([1, \infty)\) | |
n.minobsinnode | integer | 10 | \([1, \infty)\) | |
shrinkage | numeric | 0.001 | \([0, \infty)\) | |
bag.fraction | numeric | 0.5 | \([0, 1]\) | |
train.fraction | numeric | 1 | \([0, 1]\) | |
cv.folds | integer | 0 | \((-\infty, \infty)\) | |
keep.data | logical | FALSE | TRUE, FALSE | - |
verbose | logical | FALSE | TRUE, FALSE | - |
n.cores | integer | 1 | \((-\infty, \infty)\) | |
var.monotone | untyped | - | - |
Initial parameter values
keep.data
is initialized toFALSE
to save memory.n.cores
is initialized to 1 to avoid conflicts with parallelization through future.
References
Friedman, H J (2002). “Stochastic gradient boosting.” Computational statistics & data analysis, 38(4), 367–378.
See also
as.data.table(mlr_learners)
for a table of available Learners in the running session (depending on the loaded packages).Chapter in the mlr3book: https://mlr3book.mlr-org.com/basics.html#learners
mlr3learners for a selection of recommended learners.
mlr3cluster for unsupervised clustering learners.
mlr3pipelines to combine learners with pre- and postprocessing steps.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
Super classes
mlr3::Learner
-> mlr3::LearnerClassif
-> LearnerClassifGBM
Methods
Method importance()
The importance scores are extracted by gbm::relative.influence()
from
the model.
Returns
Named numeric()
.
Examples
# Define the Learner
learner = mlr3::lrn("classif.gbm")
print(learner)
#> <LearnerClassifGBM:classif.gbm>: Gradient Boosting
#> * Model: -
#> * Parameters: keep.data=FALSE, n.cores=1
#> * Packages: mlr3, mlr3extralearners, gbm
#> * Predict Types: [response], prob
#> * Feature Types: integer, numeric, factor, ordered
#> * Properties: importance, missings, twoclass, weights
# Define a Task
task = mlr3::tsk("sonar")
# Create train and test set
ids = mlr3::partition(task)
# Train the learner on the training ids
learner$train(task, row_ids = ids$train)
#> Distribution not specified, assuming bernoulli ...
print(learner$model)
#> gbm::gbm(formula = f, data = data, keep.data = FALSE, n.cores = 1L)
#> A gradient boosted model with bernoulli loss function.
#> 100 iterations were performed.
#> There were 60 predictors of which 41 had non-zero influence.
print(learner$importance())
#> V11 V36 V51 V12 V16 V28 V48
#> 30.9402284 14.2362053 8.8883305 7.6429366 5.0696606 5.0229007 4.2475351
#> V4 V39 V31 V46 V43 V59 V37
#> 4.1759313 3.8984752 3.7328716 3.6580931 3.5772408 3.2910362 3.0529305
#> V9 V27 V49 V22 V32 V42 V44
#> 2.4945100 2.2461446 2.0580039 2.0360553 2.0012495 1.8594608 1.8371835
#> V24 V33 V47 V21 V10 V45 V17
#> 1.6741295 1.6167769 1.5826222 1.4737411 1.4020433 1.0887090 1.0219290
#> V29 V20 V15 V25 V56 V34 V26
#> 0.9633307 0.9134601 0.8891835 0.8653367 0.7588169 0.7426412 0.5459871
#> V55 V30 V18 V8 V23 V1 V13
#> 0.5001232 0.4557943 0.4446434 0.3371100 0.3029723 0.2907879 0.0000000
#> V14 V19 V2 V3 V35 V38 V40
#> 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
#> V41 V5 V50 V52 V53 V54 V57
#> 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
#> V58 V6 V60 V7
#> 0.0000000 0.0000000 0.0000000 0.0000000
# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)
# Score the predictions
predictions$score()
#> classif.ce
#> 0.2028986