Gradient Boosting Classification Learner
Source:R/learner_gbm_classif_gbm.R
mlr_learners_classif.gbm.RdGradient Boosting Classification Algorithm.
Calls gbm::gbm() from gbm.
Meta Information
Task type: “classif”
Predict Types: “response”, “prob”
Feature Types: “integer”, “numeric”, “factor”, “ordered”
Required Packages: mlr3, mlr3extralearners, gbm
Parameters
| Id | Type | Default | Levels | Range |
| distribution | character | bernoulli | bernoulli, adaboost, huberized, multinomial | - |
| n.trees | integer | 100 | \([1, \infty)\) | |
| interaction.depth | integer | 1 | \([1, \infty)\) | |
| n.minobsinnode | integer | 10 | \([1, \infty)\) | |
| shrinkage | numeric | 0.001 | \([0, \infty)\) | |
| bag.fraction | numeric | 0.5 | \([0, 1]\) | |
| train.fraction | numeric | 1 | \([0, 1]\) | |
| cv.folds | integer | 0 | \((-\infty, \infty)\) | |
| keep.data | logical | FALSE | TRUE, FALSE | - |
| verbose | logical | FALSE | TRUE, FALSE | - |
| n.cores | integer | 1 | \((-\infty, \infty)\) | |
| var.monotone | untyped | - | - |
Initial parameter values
keep.datais initialized toFALSEto save memory.n.coresis initialized to 1 to avoid conflicts with parallelization through future.
References
Friedman, H J (2002). “Stochastic gradient boosting.” Computational statistics & data analysis, 38(4), 367–378.
See also
as.data.table(mlr_learners)for a table of available Learners in the running session (depending on the loaded packages).Chapter in the mlr3book: https://mlr3book.mlr-org.com/basics.html#learners
mlr3learners for a selection of recommended learners.
mlr3cluster for unsupervised clustering learners.
mlr3pipelines to combine learners with pre- and postprocessing steps.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
Super classes
mlr3::Learner -> mlr3::LearnerClassif -> LearnerClassifGBM
Methods
Inherited methods
mlr3::Learner$base_learner()mlr3::Learner$configure()mlr3::Learner$encapsulate()mlr3::Learner$format()mlr3::Learner$help()mlr3::Learner$predict()mlr3::Learner$predict_newdata()mlr3::Learner$print()mlr3::Learner$reset()mlr3::Learner$selected_features()mlr3::Learner$train()mlr3::LearnerClassif$predict_newdata_fast()
Method importance()
The importance scores are extracted by gbm::relative.influence() from
the model.
Returns
Named numeric().
Examples
# Define the Learner
learner = lrn("classif.gbm")
print(learner)
#>
#> ── <LearnerClassifGBM> (classif.gbm): Gradient Boosting ────────────────────────
#> • Model: -
#> • Parameters: keep.data=FALSE, n.cores=1
#> • Packages: mlr3, mlr3extralearners, and gbm
#> • Predict Types: [response] and prob
#> • Feature Types: integer, numeric, factor, and ordered
#> • Encapsulation: none (fallback: -)
#> • Properties: importance, missings, twoclass, and weights
#> • Other settings: use_weights = 'use'
# Define a Task
task = tsk("sonar")
# Create train and test set
ids = partition(task)
# Train the learner on the training ids
learner$train(task, row_ids = ids$train)
#> Distribution not specified, assuming bernoulli ...
print(learner$model)
#> gbm::gbm(formula = f, data = data, keep.data = FALSE, n.cores = 1L)
#> A gradient boosted model with bernoulli loss function.
#> 100 iterations were performed.
#> There were 60 predictors of which 39 had non-zero influence.
print(learner$importance())
#> V12 V21 V11 V49 V52 V36 V45
#> 12.6666040 10.8950925 10.6695937 10.0286333 9.1486173 8.7206037 8.2884767
#> V51 V55 V48 V9 V23 V27 V15
#> 8.2284616 5.2348008 3.9979271 3.8235010 3.3902673 3.0632022 2.7189592
#> V39 V43 V19 V10 V20 V44 V5
#> 2.4934684 2.4280836 2.1280270 2.0581174 1.8764570 1.8190764 1.7220595
#> V54 V4 V53 V17 V22 V58 V28
#> 1.5515848 1.5076573 1.4658806 1.3738609 1.2300689 1.1737270 0.8654398
#> V47 V3 V34 V26 V37 V16 V46
#> 0.8475596 0.7900857 0.7665298 0.7589086 0.7161513 0.6484347 0.5660053
#> V13 V35 V25 V40 V1 V14 V18
#> 0.4588905 0.4306817 0.3663874 0.3545105 0.0000000 0.0000000 0.0000000
#> V2 V24 V29 V30 V31 V32 V33
#> 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
#> V38 V41 V42 V50 V56 V57 V59
#> 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
#> V6 V60 V7 V8
#> 0.0000000 0.0000000 0.0000000 0.0000000
# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)
# Score the predictions
predictions$score()
#> classif.ce
#> 0.2318841