Classification Kernlab Support Vector Machine
Source:R/learner_kernlab_classif_ksvm.R
mlr_learners_classif.ksvm.RdSupport vector machine for classification.
Calls kernlab::ksvm() from kernlab.
Meta Information
Task type: “classif”
Predict Types: “response”, “prob”
Feature Types: “logical”, “integer”, “numeric”, “character”, “factor”, “ordered”
Required Packages: mlr3, mlr3extralearners, kernlab
Parameters
| Id | Type | Default | Levels | Range |
| scaled | logical | TRUE | TRUE, FALSE | - |
| type | character | C-svc | C-svc, nu-svc, C-bsvc, spoc-svc, kbb-svc | - |
| kernel | character | rbfdot | rbfdot, polydot, vanilladot, laplacedot, besseldot, anovadot | - |
| C | numeric | 1 | \((-\infty, \infty)\) | |
| nu | numeric | 0.2 | \([0, \infty)\) | |
| cache | integer | 40 | \([1, \infty)\) | |
| tol | numeric | 0.001 | \([0, \infty)\) | |
| shrinking | logical | TRUE | TRUE, FALSE | - |
| sigma | numeric | - | \([0, \infty)\) | |
| degree | integer | - | \([1, \infty)\) | |
| scale | numeric | - | \([0, \infty)\) | |
| order | integer | - | \((-\infty, \infty)\) | |
| offset | numeric | - | \((-\infty, \infty)\) | |
| coupler | character | minpair | minpair, pkpd | - |
References
Karatzoglou, Alexandros, Smola, Alex, Hornik, Kurt, Zeileis, Achim (2004). “kernlab-an S4 package for kernel methods in R.” Journal of statistical software, 11(9), 1–20.
See also
as.data.table(mlr_learners)for a table of available Learners in the running session (depending on the loaded packages).Chapter in the mlr3book: https://mlr3book.mlr-org.com/basics.html#learners
mlr3learners for a selection of recommended learners.
mlr3cluster for unsupervised clustering learners.
mlr3pipelines to combine learners with pre- and postprocessing steps.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
Super classes
mlr3::Learner -> mlr3::LearnerClassif -> LearnerClassifKSVM
Methods
Inherited methods
mlr3::Learner$base_learner()mlr3::Learner$configure()mlr3::Learner$encapsulate()mlr3::Learner$format()mlr3::Learner$help()mlr3::Learner$predict()mlr3::Learner$predict_newdata()mlr3::Learner$print()mlr3::Learner$reset()mlr3::Learner$selected_features()mlr3::Learner$train()mlr3::LearnerClassif$predict_newdata_fast()
Examples
# Define the Learner
learner = lrn("classif.ksvm")
print(learner)
#>
#> ── <LearnerClassifKSVM> (classif.ksvm): Support Vector Machine ─────────────────
#> • Model: -
#> • Parameters: list()
#> • Packages: mlr3, mlr3extralearners, and kernlab
#> • Predict Types: [response] and prob
#> • Feature Types: logical, integer, numeric, character, factor, and ordered
#> • Encapsulation: none (fallback: -)
#> • Properties: multiclass, twoclass, and weights
#> • Other settings: use_weights = 'use'
# Define a Task
task = tsk("sonar")
# Create train and test set
ids = partition(task)
# Train the learner on the training ids
learner$train(task, row_ids = ids$train)
print(learner$model)
#> Support Vector Machine object of class "ksvm"
#>
#> SV type: C-svc (classification)
#> parameter : cost C = 1
#>
#> Gaussian Radial Basis kernel function.
#> Hyperparameter : sigma = 0.0118309329364068
#>
#> Number of Support Vectors : 103
#>
#> Objective Function Value : -60.1112
#> Training error : 0.043165
# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)
# Score the predictions
predictions$score()
#> classif.ce
#> 0.1884058