Skip to contents

L2 regularized support vector classification. Calls LiblineaR::LiblineaR() from LiblineaR.

Details

Type of SVC depends on type argument:

  • 0 – L2-regularized logistic regression (primal)

  • 1 - L2-regularized L2-loss support vector classification (dual)

  • 3 - L2-regularized L1-loss support vector classification (dual)

  • 2 – L2-regularized L2-loss support vector classification (primal)

  • 4 – Support vector classification by Crammer and Singer

  • 5 - L1-regularized L2-loss support vector classification

  • 6 - L1-regularized logistic regression

  • 7 - L2-regularized logistic regression (dual)

If number of records > number of features, type = 2 is faster than type = 1 (Hsu et al. 2003).

Note that probabilistic predictions are only available for types 0, 6, and 7. The default epsilon value depends on the type parameter, see LiblineaR::LiblineaR.

Dictionary

This Learner can be instantiated via lrn():

lrn("classif.liblinear")

Meta Information

  • Task type: “classif”

  • Predict Types: “response”, “prob”

  • Feature Types: “numeric”

  • Required Packages: mlr3, mlr3extralearners, LiblineaR

Parameters

IdTypeDefaultLevelsRange
typeinteger0\([0, 7]\)
costnumeric1\([0, \infty)\)
epsilonnumeric-\([0, \infty)\)
biasnumeric1\((-\infty, \infty)\)
crossinteger0\([0, \infty)\)
verboselogicalFALSETRUE, FALSE-
wiuntypedNULL-
findClogicalFALSETRUE, FALSE-
useInitClogicalTRUETRUE, FALSE-

References

Fan, Rong-En, Chang, Kai-Wei, Hsieh, Cho-Jui, Wang, Xiang-Rui, Lin, Chih-Jen (2008). “LIBLINEAR: A library for large linear classification.” the Journal of machine Learning research, 9, 1871–1874.

See also

Author

be-marc

Super classes

mlr3::Learner -> mlr3::LearnerClassif -> LearnerClassifLiblineaR

Methods

Inherited methods


Method new()

Creates a new instance of this R6 class.


Method clone()

The objects of this class are cloneable with this method.

Usage

LearnerClassifLiblineaR$clone(deep = FALSE)

Arguments

deep

Whether to make a deep clone.

Examples

# Define the Learner
learner = mlr3::lrn("classif.liblinear")
print(learner)
#> <LearnerClassifLiblineaR:classif.liblinear>: Support Vector Machine
#> * Model: -
#> * Parameters: list()
#> * Packages: mlr3, mlr3extralearners, LiblineaR
#> * Predict Types:  [response], prob
#> * Feature Types: numeric
#> * Properties: multiclass, twoclass

# Define a Task
task = mlr3::tsk("sonar")

# Create train and test set
ids = mlr3::partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)
#> $TypeDetail
#> [1] "L2-regularized logistic regression primal (L2R_LR)"
#> 
#> $Type
#> [1] 0
#> 
#> $W
#>              V1       V10       V11        V12        V13       V14       V15
#> [1,] -0.1675441 -1.011929 -1.307005 -0.9830977 -0.7002241 0.1033993 0.3970572
#>           V16       V17       V18        V19         V2        V20       V21
#> [1,] 0.739781 0.3611696 0.0366113 -0.3233472 -0.2117794 -0.1639752 -0.301485
#>             V22        V23         V24       V25       V26        V27
#> [1,] -0.3369172 -0.3945042 -0.09882614 0.6207741 0.3847505 -0.1136221
#>             V28         V29         V3        V30       V31       V32
#> [1,] -0.4125949 -0.03496506 -0.2545783 0.08171528 0.9816543 0.2009526
#>             V33      V34      V35       V36       V37        V38         V39
#> [1,] 0.09074408 0.429448 0.367367 0.8128293 0.6064429 -0.1204484 -0.04777865
#>              V4       V40        V41        V42        V43       V44       V45
#> [1,] -0.5762917 0.5009287 -0.2782325 -0.6843372 -0.9817817 -1.111098 -1.336528
#>             V46        V47        V48        V49         V5         V50
#> [1,] -0.9839507 -0.6299716 -0.8021713 -0.5643749 -0.4719461 -0.08125249
#>              V51        V52         V53         V54         V55          V56
#> [1,] -0.07975648 -0.0888186 -0.03099822 -0.05809959 0.002103619 -0.008625561
#>             V57         V58         V59          V6         V60          V7
#> [1,] -0.0136484 -0.05386995 -0.05205573 -0.09160009 -0.01471076 -0.00663481
#>                V8         V9      Bias
#> [1,] -0.007521194 -0.8482334 0.8066413
#> 
#> $Bias
#> [1] 1
#> 
#> $ClassNames
#> [1] R M
#> Levels: M R
#> 
#> $NbClass
#> [1] 2
#> 
#> attr(,"class")
#> [1] "LiblineaR"


# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()
#> classif.ce 
#>   0.173913