Skip to contents

L2 regularized support vector classification. Calls LiblineaR::LiblineaR() from LiblineaR.

Details

Type of SVC depends on type argument:

  • 0 – L2-regularized logistic regression (primal)

  • 1 - L2-regularized L2-loss support vector classification (dual)

  • 3 - L2-regularized L1-loss support vector classification (dual)

  • 2 – L2-regularized L2-loss support vector classification (primal)

  • 4 – Support vector classification by Crammer and Singer

  • 5 - L1-regularized L2-loss support vector classification

  • 6 - L1-regularized logistic regression

  • 7 - L2-regularized logistic regression (dual)

If number of records > number of features, type = 2 is faster than type = 1 (Hsu et al. 2003).

Note that probabilistic predictions are only available for types 0, 6, and 7. The default epsilon value depends on the type parameter, see LiblineaR::LiblineaR.

Dictionary

This Learner can be instantiated via lrn():

lrn("classif.liblinear")

Meta Information

  • Task type: “classif”

  • Predict Types: “response”, “prob”

  • Feature Types: “numeric”

  • Required Packages: mlr3, mlr3extralearners, LiblineaR

Parameters

IdTypeDefaultLevelsRange
typeinteger0\([0, 7]\)
costnumeric1\([0, \infty)\)
epsilonnumeric-\([0, \infty)\)
biasnumeric1\((-\infty, \infty)\)
crossinteger0\([0, \infty)\)
verboselogicalFALSETRUE, FALSE-
wiuntypedNULL-
findClogicalFALSETRUE, FALSE-
useInitClogicalTRUETRUE, FALSE-

References

Fan, Rong-En, Chang, Kai-Wei, Hsieh, Cho-Jui, Wang, Xiang-Rui, Lin, Chih-Jen (2008). “LIBLINEAR: A library for large linear classification.” the Journal of machine Learning research, 9, 1871–1874.

See also

Author

be-marc

Super classes

mlr3::Learner -> mlr3::LearnerClassif -> LearnerClassifLiblineaR

Methods

Inherited methods


Method new()

Creates a new instance of this R6 class.


Method clone()

The objects of this class are cloneable with this method.

Usage

LearnerClassifLiblineaR$clone(deep = FALSE)

Arguments

deep

Whether to make a deep clone.

Examples

# Define the Learner
learner = lrn("classif.liblinear")
print(learner)
#> 
#> ── <LearnerClassifLiblineaR> (classif.liblinear): Support Vector Machine ───────
#> • Model: -
#> • Parameters: list()
#> • Packages: mlr3, mlr3extralearners, and LiblineaR
#> • Predict Types: [response] and prob
#> • Feature Types: numeric
#> • Encapsulation: none (fallback: -)
#> • Properties: multiclass and twoclass
#> • Other settings: use_weights = 'error'

# Define a Task
task = tsk("sonar")

# Create train and test set
ids = partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)
#> $TypeDetail
#> [1] "L2-regularized logistic regression primal (L2R_LR)"
#> 
#> $Type
#> [1] 0
#> 
#> $W
#>               V1        V10       V11       V12        V13        V14       V15
#> [1,] -0.09995353 -0.8358702 -1.313673 -1.198097 -0.7842883 -0.2027618 0.3001639
#>            V16       V17       V18        V19         V2        V20        V21
#> [1,] 0.5579004 0.5735405 0.2833823 -0.1313039 -0.1951134 -0.4693228 -0.3139319
#>             V22        V23        V24       V25       V26        V27       V28
#> [1,] -0.2568071 -0.4072304 -0.4427944 0.5314665 0.4541004 -0.2026216 -0.562723
#>             V29         V3       V30       V31        V32       V33       V34
#> [1,] 0.02176356 -0.2521498 0.2514506 0.8041022 0.04575886 0.1628274 0.3030345
#>            V35       V36       V37       V38      V39         V4       V40
#> [1,] 0.3535836 0.8044161 0.6562244 0.1240928 0.106835 -0.5136068 0.6550677
#>             V41        V42        V43      V44      V45        V46        V47
#> [1,] -0.2089542 -0.5528195 -0.8858411 -1.08981 -1.01574 -0.6924828 -0.4541441
#>             V48        V49        V5        V50         V51         V52
#> [1,] -0.5750186 -0.4137937 -0.425537 0.02241432 -0.09345519 -0.09385936
#>              V53         V54          V55        V56         V57         V58
#> [1,] -0.03253928 -0.06041519 -0.006685899 -0.0251833 0.005680086 -0.04548517
#>              V59         V6         V60          V7          V8         V9
#> [1,] -0.05769278 -0.1485233 -0.02776352 -0.03700721 -0.03986804 -0.5765224
#>           Bias
#> [1,] 0.9054936
#> 
#> $Bias
#> [1] 1
#> 
#> $ClassNames
#> [1] R M
#> Levels: M R
#> 
#> $NbClass
#> [1] 2
#> 
#> attr(,"class")
#> [1] "LiblineaR"


# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()
#> classif.ce 
#>  0.2028986