Skip to contents

L2 regularized support vector classification. Calls LiblineaR::LiblineaR() from LiblineaR.

Details

Type of SVC depends on type argument:

  • 0 – L2-regularized logistic regression (primal)

  • 1 - L2-regularized L2-loss support vector classification (dual)

  • 3 - L2-regularized L1-loss support vector classification (dual)

  • 2 – L2-regularized L2-loss support vector classification (primal)

  • 4 – Support vector classification by Crammer and Singer

  • 5 - L1-regularized L2-loss support vector classification

  • 6 - L1-regularized logistic regression

  • 7 - L2-regularized logistic regression (dual)

If number of records > number of features, type = 2 is faster than type = 1 (Hsu et al. 2003).

Note that probabilistic predictions are only available for types 0, 6, and 7. The default epsilon value depends on the type parameter, see LiblineaR::LiblineaR.

Dictionary

This Learner can be instantiated via lrn():

lrn("classif.liblinear")

Meta Information

  • Task type: “classif”

  • Predict Types: “response”, “prob”

  • Feature Types: “numeric”

  • Required Packages: mlr3, mlr3extralearners, LiblineaR

Parameters

IdTypeDefaultLevelsRange
typeinteger0\([0, 7]\)
costnumeric1\([0, \infty)\)
epsilonnumeric-\([0, \infty)\)
biasnumeric1\((-\infty, \infty)\)
crossinteger0\([0, \infty)\)
verboselogicalFALSETRUE, FALSE-
wiuntypedNULL-
findClogicalFALSETRUE, FALSE-
useInitClogicalTRUETRUE, FALSE-

References

Fan, Rong-En, Chang, Kai-Wei, Hsieh, Cho-Jui, Wang, Xiang-Rui, Lin, Chih-Jen (2008). “LIBLINEAR: A library for large linear classification.” the Journal of machine Learning research, 9, 1871–1874.

See also

Author

be-marc

Super classes

mlr3::Learner -> mlr3::LearnerClassif -> LearnerClassifLiblineaR

Methods

Inherited methods


Method new()

Creates a new instance of this R6 class.


Method clone()

The objects of this class are cloneable with this method.

Usage

LearnerClassifLiblineaR$clone(deep = FALSE)

Arguments

deep

Whether to make a deep clone.

Examples

# Define the Learner
learner = lrn("classif.liblinear")
print(learner)
#> 
#> ── <LearnerClassifLiblineaR> (classif.liblinear): Support Vector Machine ───────
#> • Model: -
#> • Parameters: list()
#> • Packages: mlr3, mlr3extralearners, and LiblineaR
#> • Predict Types: [response] and prob
#> • Feature Types: numeric
#> • Encapsulation: none (fallback: -)
#> • Properties: multiclass and twoclass
#> • Other settings: use_weights = 'error'

# Define a Task
task = tsk("sonar")

# Create train and test set
ids = partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)
#> $TypeDetail
#> [1] "L2-regularized logistic regression primal (L2R_LR)"
#> 
#> $Type
#> [1] 0
#> 
#> $W
#>              V1        V10       V11        V12        V13          V14
#> [1,] -0.2226696 -0.9976155 -1.085639 -0.9572193 -0.8158456 -0.009015576
#>            V15       V16       V17       V18        V19         V2        V20
#> [1,] 0.3292312 0.7716018 0.8367208 0.6803559 -0.3194628 -0.2969424 -0.5092971
#>             V21        V22        V23        V24       V25       V26        V27
#> [1,] -0.7266023 -0.6858248 -0.3386212 0.05685829 0.6960784 0.2416647 -0.2461134
#>             V28        V29         V3       V30      V31       V32          V33
#> [1,] -0.2257746 -0.1473431 -0.2459362 0.1177568 1.024319 0.2984788 -0.005435985
#>            V34      V35      V36       V37        V38        V39         V4
#> [1,] 0.1053718 0.410312 1.179976 0.7479645 -0.2794477 -0.3271733 -0.5797172
#>            V40        V41        V42       V43       V44       V45        V46
#> [1,] 0.5749453 -0.3043423 -0.7016611 -1.053081 -1.098847 -1.336921 -0.8372005
#>             V47        V48        V49         V5          V50        V51
#> [1,] -0.3921818 -0.4517884 -0.3049442 -0.5741055 3.867119e-05 -0.0623367
#>              V52         V53         V54          V55         V56        V57
#> [1,] -0.09609704 -0.02640582 -0.05199666 -0.008407454 -0.02574697 0.00953249
#>              V58         V59         V6         V60       V7        V8
#> [1,] -0.05146448 -0.06275012 -0.0833413 -0.02680819 0.158311 0.1786658
#>              V9      Bias
#> [1,] -0.6334295 0.5693979
#> 
#> $Bias
#> [1] 1
#> 
#> $ClassNames
#> [1] R M
#> Levels: M R
#> 
#> $NbClass
#> [1] 2
#> 
#> attr(,"class")
#> [1] "LiblineaR"


# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()
#> classif.ce 
#>  0.2898551