LiblineaR Classification Learner
mlr_learners_classif.liblinear.Rd
L2 regularized support vector classification.
Calls LiblineaR::LiblineaR()
from LiblineaR.
Details
Type of SVC depends on type
argument:
0
– L2-regularized logistic regression (primal)1
- L2-regularized L2-loss support vector classification (dual)3
- L2-regularized L1-loss support vector classification (dual)2
– L2-regularized L2-loss support vector classification (primal)4
– Support vector classification by Crammer and Singer5
- L1-regularized L2-loss support vector classification6
- L1-regularized logistic regression7
- L2-regularized logistic regression (dual)
If number of records > number of features, type = 2
is faster than type = 1
(Hsu et al. 2003).
Note that probabilistic predictions are only available for types 0
, 6
, and 7
.
The default epsilon
value depends on the type
parameter, see LiblineaR::LiblineaR.
Meta Information
Task type: “classif”
Predict Types: “response”, “prob”
Feature Types: “numeric”
Required Packages: mlr3, mlr3extralearners, LiblineaR
Parameters
Id | Type | Default | Levels | Range |
type | integer | 0 | \([0, 7]\) | |
cost | numeric | 1 | \([0, \infty)\) | |
epsilon | numeric | - | \([0, \infty)\) | |
bias | numeric | 1 | \((-\infty, \infty)\) | |
cross | integer | 0 | \([0, \infty)\) | |
verbose | logical | FALSE | TRUE, FALSE | - |
wi | untyped | NULL | - | |
findC | logical | FALSE | TRUE, FALSE | - |
useInitC | logical | TRUE | TRUE, FALSE | - |
References
Fan, Rong-En, Chang, Kai-Wei, Hsieh, Cho-Jui, Wang, Xiang-Rui, Lin, Chih-Jen (2008). “LIBLINEAR: A library for large linear classification.” the Journal of machine Learning research, 9, 1871–1874.
See also
as.data.table(mlr_learners)
for a table of available Learners in the running session (depending on the loaded packages).Chapter in the mlr3book: https://mlr3book.mlr-org.com/basics.html#learners
mlr3learners for a selection of recommended learners.
mlr3cluster for unsupervised clustering learners.
mlr3pipelines to combine learners with pre- and postprocessing steps.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
Super classes
mlr3::Learner
-> mlr3::LearnerClassif
-> LearnerClassifLiblineaR
Examples
# Define the Learner
learner = mlr3::lrn("classif.liblinear")
print(learner)
#> <LearnerClassifLiblineaR:classif.liblinear>: Support Vector Machine
#> * Model: -
#> * Parameters: list()
#> * Packages: mlr3, mlr3extralearners, LiblineaR
#> * Predict Types: [response], prob
#> * Feature Types: numeric
#> * Properties: multiclass, twoclass
# Define a Task
task = mlr3::tsk("sonar")
# Create train and test set
ids = mlr3::partition(task)
# Train the learner on the training ids
learner$train(task, row_ids = ids$train)
print(learner$model)
#> $TypeDetail
#> [1] "L2-regularized logistic regression primal (L2R_LR)"
#>
#> $Type
#> [1] 0
#>
#> $W
#> V1 V10 V11 V12 V13 V14
#> [1,] -0.1842165 -0.8976506 -0.9938054 -0.8205018 -0.6100843 -0.09180798
#> V15 V16 V17 V18 V19 V2 V20
#> [1,] 0.02740911 0.5409652 0.8181339 0.6069045 -0.5295315 -0.3049297 -0.5845676
#> V21 V22 V23 V24 V25 V26 V27
#> [1,] -0.534389 -0.2713685 0.04935603 -0.2578147 0.4053306 0.3766664 -0.1003583
#> V28 V29 V3 V30 V31 V32 V33
#> [1,] -0.3309932 -0.5506531 -0.292226 -0.4665738 0.702954 0.5226879 0.6415421
#> V34 V35 V36 V37 V38 V39 V4
#> [1,] 0.4820779 0.6322869 1.146099 0.6412833 -0.4515291 -0.5017496 -0.4644059
#> V40 V41 V42 V43 V44 V45 V46
#> [1,] 0.478406 0.0006252704 -0.5867588 -0.9003587 -1.101843 -1.519956 -1.081507
#> V47 V48 V49 V5 V50 V51
#> [1,] -0.6340276 -0.5960036 -0.3363254 -0.5466209 0.0006201084 -0.06413747
#> V52 V53 V54 V55 V56 V57
#> [1,] -0.09309254 -0.01369913 -0.04660929 -0.006925144 -0.01920783 0.01504695
#> V58 V59 V6 V60 V7 V8
#> [1,] -0.0125153 -0.04039051 -0.2869995 -0.004635126 0.02476066 -0.05740752
#> V9 Bias
#> [1,] -0.896666 1.054717
#>
#> $Bias
#> [1] 1
#>
#> $ClassNames
#> [1] R M
#> Levels: M R
#>
#> $NbClass
#> [1] 2
#>
#> attr(,"class")
#> [1] "LiblineaR"
# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)
# Score the predictions
predictions$score()
#> classif.ce
#> 0.3478261