LiblineaR Classification Learner
mlr_learners_classif.liblinear.Rd
L2 regularized support vector classification.
Calls LiblineaR::LiblineaR()
from LiblineaR.
Details
Type of SVC depends on type
argument:
0
– L2-regularized logistic regression (primal)1
- L2-regularized L2-loss support vector classification (dual)3
- L2-regularized L1-loss support vector classification (dual)2
– L2-regularized L2-loss support vector classification (primal)4
– Support vector classification by Crammer and Singer5
- L1-regularized L2-loss support vector classification6
- L1-regularized logistic regression7
- L2-regularized logistic regression (dual)
If number of records > number of features, type = 2
is faster than type = 1
(Hsu et al. 2003).
Note that probabilistic predictions are only available for types 0
, 6
, and 7
.
The default epsilon
value depends on the type
parameter, see LiblineaR::LiblineaR.
Meta Information
Task type: “classif”
Predict Types: “response”, “prob”
Feature Types: “numeric”
Required Packages: mlr3, mlr3extralearners, LiblineaR
Parameters
Id | Type | Default | Levels | Range |
type | integer | 0 | \([0, 7]\) | |
cost | numeric | 1 | \([0, \infty)\) | |
epsilon | numeric | - | \([0, \infty)\) | |
bias | numeric | 1 | \((-\infty, \infty)\) | |
cross | integer | 0 | \([0, \infty)\) | |
verbose | logical | FALSE | TRUE, FALSE | - |
wi | untyped | NULL | - | |
findC | logical | FALSE | TRUE, FALSE | - |
useInitC | logical | TRUE | TRUE, FALSE | - |
References
Fan, Rong-En, Chang, Kai-Wei, Hsieh, Cho-Jui, Wang, Xiang-Rui, Lin, Chih-Jen (2008). “LIBLINEAR: A library for large linear classification.” the Journal of machine Learning research, 9, 1871–1874.
See also
as.data.table(mlr_learners)
for a table of available Learners in the running session (depending on the loaded packages).Chapter in the mlr3book: https://mlr3book.mlr-org.com/basics.html#learners
mlr3learners for a selection of recommended learners.
mlr3cluster for unsupervised clustering learners.
mlr3pipelines to combine learners with pre- and postprocessing steps.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
Super classes
mlr3::Learner
-> mlr3::LearnerClassif
-> LearnerClassifLiblineaR
Examples
# Define the Learner
learner = mlr3::lrn("classif.liblinear")
print(learner)
#>
#> ── <LearnerClassifLiblineaR> (classif.liblinear): Support Vector Machine ───────
#> • Model: -
#> • Parameters: list()
#> • Packages: mlr3, mlr3extralearners, and LiblineaR
#> • Predict Types: [response] and prob
#> • Feature Types: numeric
#> • Encapsulation: none (fallback: -)
#> • Properties: multiclass and twoclass
#> • Other settings: use_weights = 'error'
# Define a Task
task = mlr3::tsk("sonar")
# Create train and test set
ids = mlr3::partition(task)
# Train the learner on the training ids
learner$train(task, row_ids = ids$train)
print(learner$model)
#> $TypeDetail
#> [1] "L2-regularized logistic regression primal (L2R_LR)"
#>
#> $Type
#> [1] 0
#>
#> $W
#> V1 V10 V11 V12 V13 V14 V15
#> [1,] -0.1521274 -1.01473 -1.400273 -1.296184 -0.7718394 0.1672105 0.6627299
#> V16 V17 V18 V19 V2 V20 V21
#> [1,] 0.8109408 0.3676042 0.06702335 -0.2731867 -0.2134672 -0.7439989 -0.8654165
#> V22 V23 V24 V25 V26 V27 V28
#> [1,] -0.513537 -0.2036223 0.06287565 0.5724382 0.7665796 0.05252608 -0.4456103
#> V29 V3 V30 V31 V32 V33 V34
#> [1,] 0.1027285 -0.1852969 -0.1256383 0.5550419 -0.3101017 -0.2522665 0.5033172
#> V35 V36 V37 V38 V39 V4 V40
#> [1,] 0.949814 1.316681 0.9576894 0.09509058 -0.09846712 -0.3778988 0.4790584
#> V41 V42 V43 V44 V45 V46 V47
#> [1,] -0.1854395 -0.3429808 -0.6748284 -0.9005077 -1.19329 -0.8222509 -0.5823661
#> V48 V49 V5 V50 V51 V52
#> [1,] -0.5709776 -0.3521956 -0.2581671 0.002193209 -0.06235944 -0.07393378
#> V53 V54 V55 V56 V57 V58
#> [1,] -0.01227961 -0.03644803 0.009975284 -0.03286646 -0.02451926 -0.04273373
#> V59 V6 V60 V7 V8 V9 Bias
#> [1,] -0.0406709 -0.266374 -0.00315536 -0.1128721 -0.3728892 -1.103574 0.6684888
#>
#> $Bias
#> [1] 1
#>
#> $ClassNames
#> [1] R M
#> Levels: M R
#>
#> $NbClass
#> [1] 2
#>
#> attr(,"class")
#> [1] "LiblineaR"
# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)
# Score the predictions
predictions$score()
#> classif.ce
#> 0.3188406