Skip to contents

L2 regularized support vector classification. Calls LiblineaR::LiblineaR() from LiblineaR.

Details

Type of SVC depends on type argument:

  • 0 – L2-regularized logistic regression (primal)

  • 1 - L2-regularized L2-loss support vector classification (dual)

  • 3 - L2-regularized L1-loss support vector classification (dual)

  • 2 – L2-regularized L2-loss support vector classification (primal)

  • 4 – Support vector classification by Crammer and Singer

  • 5 - L1-regularized L2-loss support vector classification

  • 6 - L1-regularized logistic regression

  • 7 - L2-regularized logistic regression (dual)

If number of records > number of features, type = 2 is faster than type = 1 (Hsu et al. 2003).

Note that probabilistic predictions are only available for types 0, 6, and 7. The default epsilon value depends on the type parameter, see LiblineaR::LiblineaR.

Dictionary

This Learner can be instantiated via lrn():

lrn("classif.liblinear")

Meta Information

  • Task type: “classif”

  • Predict Types: “response”, “prob”

  • Feature Types: “numeric”

  • Required Packages: mlr3, mlr3extralearners, LiblineaR

Parameters

IdTypeDefaultLevelsRange
typeinteger0\([0, 7]\)
costnumeric1\([0, \infty)\)
epsilonnumeric-\([0, \infty)\)
biasnumeric1\((-\infty, \infty)\)
crossinteger0\([0, \infty)\)
verboselogicalFALSETRUE, FALSE-
wiuntypedNULL-
findClogicalFALSETRUE, FALSE-
useInitClogicalTRUETRUE, FALSE-

References

Fan, Rong-En, Chang, Kai-Wei, Hsieh, Cho-Jui, Wang, Xiang-Rui, Lin, Chih-Jen (2008). “LIBLINEAR: A library for large linear classification.” the Journal of machine Learning research, 9, 1871–1874.

See also

Author

be-marc

Super classes

mlr3::Learner -> mlr3::LearnerClassif -> LearnerClassifLiblineaR

Methods

Inherited methods


Method new()

Creates a new instance of this R6 class.


Method clone()

The objects of this class are cloneable with this method.

Usage

LearnerClassifLiblineaR$clone(deep = FALSE)

Arguments

deep

Whether to make a deep clone.

Examples

# Define the Learner
learner = mlr3::lrn("classif.liblinear")
print(learner)
#> <LearnerClassifLiblineaR:classif.liblinear>: Support Vector Machine
#> * Model: -
#> * Parameters: list()
#> * Packages: mlr3, mlr3extralearners, LiblineaR
#> * Predict Types:  [response], prob
#> * Feature Types: numeric
#> * Properties: multiclass, twoclass

# Define a Task
task = mlr3::tsk("sonar")

# Create train and test set
ids = mlr3::partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)
#> $TypeDetail
#> [1] "L2-regularized logistic regression primal (L2R_LR)"
#> 
#> $Type
#> [1] 0
#> 
#> $W
#>              V1        V10        V11        V12        V13         V14
#> [1,] -0.1842165 -0.8976506 -0.9938054 -0.8205018 -0.6100843 -0.09180798
#>             V15       V16       V17       V18        V19         V2        V20
#> [1,] 0.02740911 0.5409652 0.8181339 0.6069045 -0.5295315 -0.3049297 -0.5845676
#>            V21        V22        V23        V24       V25       V26        V27
#> [1,] -0.534389 -0.2713685 0.04935603 -0.2578147 0.4053306 0.3766664 -0.1003583
#>             V28        V29        V3        V30      V31       V32       V33
#> [1,] -0.3309932 -0.5506531 -0.292226 -0.4665738 0.702954 0.5226879 0.6415421
#>            V34       V35      V36       V37        V38        V39         V4
#> [1,] 0.4820779 0.6322869 1.146099 0.6412833 -0.4515291 -0.5017496 -0.4644059
#>           V40          V41        V42        V43       V44       V45       V46
#> [1,] 0.478406 0.0006252704 -0.5867588 -0.9003587 -1.101843 -1.519956 -1.081507
#>             V47        V48        V49         V5          V50         V51
#> [1,] -0.6340276 -0.5960036 -0.3363254 -0.5466209 0.0006201084 -0.06413747
#>              V52         V53         V54          V55         V56        V57
#> [1,] -0.09309254 -0.01369913 -0.04660929 -0.006925144 -0.01920783 0.01504695
#>             V58         V59         V6          V60         V7          V8
#> [1,] -0.0125153 -0.04039051 -0.2869995 -0.004635126 0.02476066 -0.05740752
#>             V9     Bias
#> [1,] -0.896666 1.054717
#> 
#> $Bias
#> [1] 1
#> 
#> $ClassNames
#> [1] R M
#> Levels: M R
#> 
#> $NbClass
#> [1] 2
#> 
#> attr(,"class")
#> [1] "LiblineaR"


# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()
#> classif.ce 
#>  0.3478261