Skip to contents

Multinomial Logistic Regression model with a ridge estimator. Calls RWeka::Logistic() from RWeka.

Custom mlr3 parameters

  • output_debug_info:

    • original id: output-debug-info

  • do_not_check_capabilities:

    • original id: do-not-check-capabilities

  • num_decimal_places:

    • original id: num-decimal-places

  • batch_size:

    • original id: batch-size

  • Reason for change: This learner contains changed ids of the following control arguments since their ids contain irregular pattern

Dictionary

This Learner can be instantiated via lrn():

lrn("classif.logistic")

Meta Information

  • Task type: “classif”

  • Predict Types: “response”, “prob”

  • Feature Types: “logical”, “integer”, “numeric”, “factor”, “ordered”

  • Required Packages: mlr3, RWeka

Parameters

IdTypeDefaultLevelsRange
subsetuntyped--
na.actionuntyped--
ClogicalFALSETRUE, FALSE-
Rnumeric-\((-\infty, \infty)\)
Minteger-1\((-\infty, \infty)\)
output_debug_infologicalFALSETRUE, FALSE-
do_not_check_capabilitieslogicalFALSETRUE, FALSE-
num_decimal_placesinteger2\([1, \infty)\)
batch_sizeinteger100\([1, \infty)\)
optionsuntypedNULL-

References

le Cessie, S., van Houwelingen, J.C. (1992). “Ridge Estimators in Logistic Regression.” Applied Statistics, 41(1), 191-201.

See also

Author

damirpolat

Super classes

mlr3::Learner -> mlr3::LearnerClassif -> LearnerClassifLogistic

Methods

Inherited methods


Method new()

Creates a new instance of this R6 class.


Method clone()

The objects of this class are cloneable with this method.

Usage

LearnerClassifLogistic$clone(deep = FALSE)

Arguments

deep

Whether to make a deep clone.

Examples

# Define the Learner
learner = mlr3::lrn("classif.logistic")
print(learner)
#> <LearnerClassifLogistic:classif.logistic>: Multinomial Logistic Regression
#> * Model: -
#> * Parameters: list()
#> * Packages: mlr3, RWeka
#> * Predict Types:  [response], prob
#> * Feature Types: logical, integer, numeric, factor, ordered
#> * Properties: missings, multiclass, twoclass

# Define a Task
task = mlr3::tsk("sonar")

# Create train and test set
ids = mlr3::partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)
#> Logistic Regression with ridge parameter of 1.0E-8
#> Coefficients...
#>                               Class
#> Variable                          M
#> ===================================
#> V1                         453.4184
#> V10                       -133.7968
#> V11                        191.1933
#> V12                        -19.4438
#> V13                         121.512
#> V14                       -101.6786
#> V15                         17.1232
#> V16                          1.5217
#> V17                        -148.978
#> V18                        148.0813
#> V19                       -106.6291
#> V2                         -85.5374
#> V20                         137.175
#> V21                       -112.4901
#> V22                         -2.5949
#> V23                        163.2242
#> V24                        -81.4585
#> V25                          16.481
#> V26                         12.2917
#> V27                        -37.1483
#> V28                         15.5923
#> V29                        -20.2377
#> V3                        -214.2644
#> V30                          136.07
#> V31                       -317.9738
#> V32                        227.0498
#> V33                        -68.8431
#> V34                        -73.8549
#> V35                        119.6303
#> V36                       -178.2345
#> V37                         66.7009
#> V38                         -1.2016
#> V39                         91.7845
#> V4                         -13.3527
#> V40                        -155.497
#> V41                         55.4502
#> V42                        -20.1281
#> V43                         74.5815
#> V44                        -43.9613
#> V45                         35.3743
#> V46                       -112.5375
#> V47                        177.3002
#> V48                        269.7603
#> V49                        911.4082
#> V5                         159.2952
#> V50                      -2002.7006
#> V51                        560.9657
#> V52                        200.6075
#> V53                        1442.989
#> V54                       -352.1258
#> V55                      -2057.1896
#> V56                        270.1844
#> V57                      -2351.2458
#> V58                       1157.7043
#> V59                       3532.8815
#> V6                        -212.4757
#> V60                        334.5302
#> V7                         127.7981
#> V8                        -301.3335
#> V9                         304.0744
#> Intercept                  -60.1048
#> 
#> 
#> Odds Ratios...
#>                               Class
#> Variable                          M
#> ===================================
#> V1            8.262765577225869E196
#> V10                               0
#> V11           1.0819462624689283E83
#> V12                               0
#> V13            5.915512696885996E52
#> V14                               0
#> V15                   27321400.2877
#> V16                            4.58
#> V17                               0
#> V18           2.0460017476027226E64
#> V19                               0
#> V2                                0
#> V20           3.7526180159380686E59
#> V21                               0
#> V22                          0.0747
#> V23            7.715518147182049E70
#> V24                               0
#> V25                   14374852.1072
#> V26                     217872.9229
#> V27                               0
#> V28                    5910587.7238
#> V29                               0
#> V3                                0
#> V30           1.2428861857571876E59
#> V31                               0
#> V32            4.040984930443973E98
#> V33                               0
#> V34                               0
#> V35            9.010909524425405E51
#> V36                               0
#> V37            9.286528820241481E28
#> V38                          0.3007
#> V39            7.269591221779289E39
#> V4                                0
#> V40                               0
#> V41           1.2070599826367948E24
#> V42                               0
#> V43           2.4566576454591934E32
#> V44                               0
#> V45             2.30599388480372E15
#> V46                               0
#> V47           1.0011205373205385E77
#> V48          1.4301901957832856E117
#> V49                        Infinity
#> V5            1.5171800603218354E69
#> V50                               0
#> V51           4.210315161425237E243
#> V52           1.3265474605861156E87
#> V53                        Infinity
#> V54                               0
#> V55                               0
#> V56          2.1857915851145038E117
#> V57                               0
#> V58                        Infinity
#> V59                        Infinity
#> V6                                0
#> V60          1.9257597664430876E145
#> V7             3.177059527466585E55
#> V8                                0
#> V9             1.14240759783648E132
#> 


# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()
#> classif.ce 
#>  0.2608696