Skip to contents

Multinomial Logistic Regression model with a ridge estimator. Calls RWeka::Logistic() from RWeka.

Custom mlr3 parameters

  • output_debug_info:

    • original id: output-debug-info

  • do_not_check_capabilities:

    • original id: do-not-check-capabilities

  • num_decimal_places:

    • original id: num-decimal-places

  • batch_size:

    • original id: batch-size

  • Reason for change: This learner contains changed ids of the following control arguments since their ids contain irregular pattern

Dictionary

This Learner can be instantiated via lrn():

lrn("classif.logistic")

Meta Information

  • Task type: “classif”

  • Predict Types: “response”, “prob”

  • Feature Types: “logical”, “integer”, “numeric”, “factor”, “ordered”

  • Required Packages: mlr3, RWeka

Parameters

IdTypeDefaultLevelsRange
subsetuntyped--
na.actionuntyped--
ClogicalFALSETRUE, FALSE-
Rnumeric-\((-\infty, \infty)\)
Minteger-1\((-\infty, \infty)\)
output_debug_infologicalFALSETRUE, FALSE-
do_not_check_capabilitieslogicalFALSETRUE, FALSE-
num_decimal_placesinteger2\([1, \infty)\)
batch_sizeinteger100\([1, \infty)\)
optionsuntypedNULL-

References

le Cessie, S., van Houwelingen, J.C. (1992). “Ridge Estimators in Logistic Regression.” Applied Statistics, 41(1), 191-201.

See also

Author

damirpolat

Super classes

mlr3::Learner -> mlr3::LearnerClassif -> LearnerClassifLogistic

Methods

Inherited methods


Method new()

Creates a new instance of this R6 class.


Method clone()

The objects of this class are cloneable with this method.

Usage

LearnerClassifLogistic$clone(deep = FALSE)

Arguments

deep

Whether to make a deep clone.

Examples

# Define the Learner
learner = mlr3::lrn("classif.logistic")
print(learner)
#> <LearnerClassifLogistic:classif.logistic>: Multinomial Logistic Regression
#> * Model: -
#> * Parameters: list()
#> * Packages: mlr3, RWeka
#> * Predict Types:  [response], prob
#> * Feature Types: logical, integer, numeric, factor, ordered
#> * Properties: missings, multiclass, twoclass

# Define a Task
task = mlr3::tsk("sonar")

# Create train and test set
ids = mlr3::partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)
#> Logistic Regression with ridge parameter of 1.0E-8
#> Coefficients...
#>                               Class
#> Variable                          M
#> ===================================
#> V1                         161.3176
#> V10                        -58.6489
#> V11                         36.8415
#> V12                         162.091
#> V13                         69.6851
#> V14                        -67.2221
#> V15                         55.0254
#> V16                         30.1499
#> V17                        -49.8021
#> V18                         30.2913
#> V19                       -104.7418
#> V2                        -221.2751
#> V20                         84.9947
#> V21                        -31.8445
#> V22                        -27.1124
#> V23                         25.4347
#> V24                        107.2497
#> V25                        -14.7369
#> V26                        -71.0157
#> V27                        121.4037
#> V28                       -140.8023
#> V29                         -1.5647
#> V3                        -687.5924
#> V30                        225.9061
#> V31                       -346.7713
#> V32                        212.1559
#> V33                         12.4838
#> V34                       -149.7132
#> V35                        168.2877
#> V36                        -20.5567
#> V37                       -156.1091
#> V38                         37.6458
#> V39                          46.326
#> V4                         816.9671
#> V40                        -27.6601
#> V41                        -54.8546
#> V42                         55.8464
#> V43                       -169.0059
#> V44                        198.4007
#> V45                         60.8199
#> V46                       -148.0957
#> V47                        318.0967
#> V48                       -195.3306
#> V49                        486.8697
#> V5                        -176.9804
#> V50                       -282.9765
#> V51                       1300.5006
#> V52                        457.7236
#> V53                       1850.4186
#> V54                      -1498.7754
#> V55                         -843.84
#> V56                       1043.9965
#> V57                      -1876.6032
#> V58                       2911.9757
#> V59                       -168.8857
#> V6                         -35.9018
#> V60                       -2209.457
#> V7                        -224.4345
#> V8                         -26.9353
#> V9                          77.2001
#> Intercept                  -74.1138
#> 
#> 
#> Odds Ratios...
#>                               Class
#> Variable                          M
#> ===================================
#> V1            1.1464303484024676E70
#> V10                               0
#> V11           1.0001218536876688E16
#> V12            2.484385571604982E70
#> V13           1.8359666679442502E30
#> V14                               0
#> V15              7.8927377578734E23
#> V16           1.2415251882400541E13
#> V17                               0
#> V18            1.429965219720224E13
#> V19                               0
#> V2                                0
#> V20            8.179945416742833E36
#> V21                               0
#> V22                               0
#> V23           1.1121160711443756E11
#> V24            3.784022656659464E46
#> V25                               0
#> V26                               0
#> V27            5.308224640536061E52
#> V28                               0
#> V29                          0.2092
#> V3                                0
#> V30           1.2876385004124486E98
#> V31                               0
#> V32            1.374427355190605E92
#> V33                     264013.2355
#> V34                               0
#> V35           1.2201189577977686E73
#> V36                               0
#> V37                               0
#> V38           2.2353523613874672E16
#> V39           1.3156010119896559E20
#> V4                         Infinity
#> V40                               0
#> V41                               0
#> V42           1.7938077511867866E24
#> V43                               0
#> V44            1.459889502181724E86
#> V45            2.592795453583834E26
#> V46                               0
#> V47          1.4048500661980718E138
#> V48                               0
#> V49           2.785053663254451E211
#> V5                                0
#> V50                               0
#> V51                        Infinity
#> V52           6.121306597232287E198
#> V53                        Infinity
#> V54                               0
#> V55                               0
#> V56                        Infinity
#> V57                               0
#> V58                        Infinity
#> V59                               0
#> V6                                0
#> V60                               0
#> V7                                0
#> V8                                0
#> V9            3.3696641613415303E33
#> 


# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()
#> classif.ce 
#>  0.3478261