Classification Naive Bayes Learner From Weka
Source:R/learner_RWeka_classif_naive_bayes_weka.R
mlr_learners_classif.naive_bayes_weka.RdNaive Bayes Classifier Using Estimator Classes.
Calls RWeka::make_Weka_classifier() from RWeka.
Custom mlr3 parameters
output_debug_info:original id: output-debug-info
do_not_check_capabilities:original id: do-not-check-capabilities
num_decimal_places:original id: num-decimal-places
batch_size:original id: batch-size
Reason for change: This learner contains changed ids of the following control arguments since their ids contain irregular pattern
Parameters
| Id | Type | Default | Levels | Range |
| subset | untyped | - | - | |
| na.action | untyped | - | - | |
| K | logical | FALSE | TRUE, FALSE | - |
| D | logical | FALSE | TRUE, FALSE | - |
| O | logical | FALSE | TRUE, FALSE | - |
| output_debug_info | logical | FALSE | TRUE, FALSE | - |
| do_not_check_capabilities | logical | FALSE | TRUE, FALSE | - |
| num_decimal_places | integer | 2 | \([1, \infty)\) | |
| batch_size | integer | 100 | \([1, \infty)\) | |
| options | untyped | NULL | - |
References
John GH, Langley P (1995). “Estimating Continuous Distributions in Bayesian Classifiers.” In Eleventh Conference on Uncertainty in Artificial Intelligence, 338-345.
See also
as.data.table(mlr_learners)for a table of available Learners in the running session (depending on the loaded packages).Chapter in the mlr3book: https://mlr3book.mlr-org.com/basics.html#learners
mlr3learners for a selection of recommended learners.
mlr3cluster for unsupervised clustering learners.
mlr3pipelines to combine learners with pre- and postprocessing steps.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
Super classes
mlr3::Learner -> mlr3::LearnerClassif -> LearnerClassifNaiveBayesWeka
Methods
Inherited methods
mlr3::Learner$base_learner()mlr3::Learner$configure()mlr3::Learner$encapsulate()mlr3::Learner$format()mlr3::Learner$help()mlr3::Learner$predict()mlr3::Learner$predict_newdata()mlr3::Learner$print()mlr3::Learner$reset()mlr3::Learner$selected_features()mlr3::Learner$train()mlr3::LearnerClassif$predict_newdata_fast()
Method marshal()
Marshal the learner's model.
Arguments
...(any)
Additional arguments passed tomlr3::marshal_model().
Method unmarshal()
Unmarshal the learner's model.
Arguments
...(any)
Additional arguments passed tomlr3::unmarshal_model().
Examples
# Define the Learner
learner = lrn("classif.naive_bayes_weka")
print(learner)
#>
#> ── <LearnerClassifNaiveBayesWeka> (classif.naive_bayes_weka): Naive Bayes ──────
#> • Model: -
#> • Parameters: list()
#> • Packages: mlr3 and RWeka
#> • Predict Types: [response] and prob
#> • Feature Types: logical, integer, numeric, factor, and ordered
#> • Encapsulation: none (fallback: -)
#> • Properties: marshal, missings, multiclass, and twoclass
#> • Other settings: use_weights = 'error'
# Define a Task
task = tsk("sonar")
# Create train and test set
ids = partition(task)
# Train the learner on the training ids
learner$train(task, row_ids = ids$train)
print(learner$model)
#> Naive Bayes Classifier
#>
#> Class
#> Attribute M R
#> (0.5) (0.5)
#> ===============================
#> V1
#> mean 0.0344 0.0226
#> std. dev. 0.0246 0.0136
#> weight sum 70 69
#> precision 0.0011 0.0011
#>
#> V10
#> mean 0.243 0.1593
#> std. dev. 0.1326 0.1086
#> weight sum 70 69
#> precision 0.0047 0.0047
#>
#> V11
#> mean 0.2735 0.1732
#> std. dev. 0.1144 0.1117
#> weight sum 70 69
#> precision 0.0048 0.0048
#>
#> V12
#> mean 0.2876 0.1842
#> std. dev. 0.1121 0.1319
#> weight sum 70 69
#> precision 0.0049 0.0049
#>
#> V13
#> mean 0.3096 0.227
#> std. dev. 0.1216 0.1383
#> weight sum 70 69
#> precision 0.0051 0.0051
#>
#> V14
#> mean 0.3244 0.2823
#> std. dev. 0.1466 0.1739
#> weight sum 70 69
#> precision 0.0058 0.0058
#>
#> V15
#> mean 0.3385 0.3209
#> std. dev. 0.1844 0.2289
#> weight sum 70 69
#> precision 0.0073 0.0073
#>
#> V16
#> mean 0.3901 0.3843
#> std. dev. 0.2039 0.2658
#> weight sum 70 69
#> precision 0.007 0.007
#>
#> V17
#> mean 0.4318 0.4179
#> std. dev. 0.2361 0.2997
#> weight sum 70 69
#> precision 0.0073 0.0073
#>
#> V18
#> mean 0.4735 0.4582
#> std. dev. 0.2565 0.2794
#> weight sum 70 69
#> precision 0.0068 0.0068
#>
#> V19
#> mean 0.5537 0.4826
#> std. dev. 0.2563 0.2747
#> weight sum 70 69
#> precision 0.0068 0.0068
#>
#> V2
#> mean 0.0467 0.0327
#> std. dev. 0.0396 0.0252
#> weight sum 70 69
#> precision 0.0019 0.0019
#>
#> V20
#> mean 0.622 0.5071
#> std. dev. 0.2535 0.2744
#> weight sum 70 69
#> precision 0.0069 0.0069
#>
#> V21
#> mean 0.6624 0.5468
#> std. dev. 0.2531 0.2546
#> weight sum 70 69
#> precision 0.0071 0.0071
#>
#> V22
#> mean 0.6567 0.5599
#> std. dev. 0.2453 0.267
#> weight sum 70 69
#> precision 0.0072 0.0072
#>
#> V23
#> mean 0.6646 0.5914
#> std. dev. 0.2529 0.2418
#> weight sum 70 69
#> precision 0.007 0.007
#>
#> V24
#> mean 0.6787 0.6439
#> std. dev. 0.2465 0.2219
#> weight sum 70 69
#> precision 0.0072 0.0072
#>
#> V25
#> mean 0.6597 0.6688
#> std. dev. 0.2544 0.2422
#> weight sum 70 69
#> precision 0.0072 0.0072
#>
#> V26
#> mean 0.6844 0.6926
#> std. dev. 0.2486 0.2403
#> weight sum 70 69
#> precision 0.0073 0.0073
#>
#> V27
#> mean 0.7015 0.684
#> std. dev. 0.2623 0.2246
#> weight sum 70 69
#> precision 0.0074 0.0074
#>
#> V28
#> mean 0.7015 0.6631
#> std. dev. 0.2512 0.2042
#> weight sum 70 69
#> precision 0.0075 0.0075
#>
#> V29
#> mean 0.6437 0.6212
#> std. dev. 0.2372 0.2285
#> weight sum 70 69
#> precision 0.007 0.007
#>
#> V3
#> mean 0.0539 0.035
#> std. dev. 0.048 0.0302
#> weight sum 70 69
#> precision 0.0023 0.0023
#>
#> V30
#> mean 0.5875 0.5669
#> std. dev. 0.205 0.2324
#> weight sum 70 69
#> precision 0.007 0.007
#>
#> V31
#> mean 0.4876 0.5195
#> std. dev. 0.2202 0.1951
#> weight sum 70 69
#> precision 0.0067 0.0067
#>
#> V32
#> mean 0.4337 0.4383
#> std. dev. 0.2183 0.2067
#> weight sum 70 69
#> precision 0.0065 0.0065
#>
#> V33
#> mean 0.3939 0.4274
#> std. dev. 0.214 0.2044
#> weight sum 70 69
#> precision 0.0069 0.0069
#>
#> V34
#> mean 0.3558 0.4266
#> std. dev. 0.2234 0.235
#> weight sum 70 69
#> precision 0.0068 0.0068
#>
#> V35
#> mean 0.3351 0.4306
#> std. dev. 0.2419 0.2442
#> weight sum 70 69
#> precision 0.0071 0.0071
#>
#> V36
#> mean 0.3113 0.4441
#> std. dev. 0.236 0.2475
#> weight sum 70 69
#> precision 0.0073 0.0073
#>
#> V37
#> mean 0.3065 0.4167
#> std. dev. 0.2187 0.236
#> weight sum 70 69
#> precision 0.0067 0.0067
#>
#> V38
#> mean 0.3306 0.3506
#> std. dev. 0.2064 0.2104
#> weight sum 70 69
#> precision 0.0067 0.0067
#>
#> V39
#> mean 0.3357 0.3228
#> std. dev. 0.189 0.2032
#> weight sum 70 69
#> precision 0.0068 0.0068
#>
#> V4
#> mean 0.069 0.0409
#> std. dev. 0.0612 0.0313
#> weight sum 70 69
#> precision 0.0033 0.0033
#>
#> V40
#> mean 0.3182 0.3201
#> std. dev. 0.1637 0.1889
#> weight sum 70 69
#> precision 0.0065 0.0065
#>
#> V41
#> mean 0.3165 0.2859
#> std. dev. 0.1818 0.1731
#> weight sum 70 69
#> precision 0.0063 0.0063
#>
#> V42
#> mean 0.317 0.2506
#> std. dev. 0.1705 0.1605
#> weight sum 70 69
#> precision 0.0059 0.0059
#>
#> V43
#> mean 0.2703 0.2087
#> std. dev. 0.1371 0.1333
#> weight sum 70 69
#> precision 0.0057 0.0057
#>
#> V44
#> mean 0.2355 0.1723
#> std. dev. 0.1394 0.1148
#> weight sum 70 69
#> precision 0.0059 0.0059
#>
#> V45
#> mean 0.2389 0.1388
#> std. dev. 0.1738 0.0987
#> weight sum 70 69
#> precision 0.0052 0.0052
#>
#> V46
#> mean 0.204 0.113
#> std. dev. 0.1496 0.0954
#> weight sum 70 69
#> precision 0.0046 0.0046
#>
#> V47
#> mean 0.1547 0.0949
#> std. dev. 0.0941 0.0696
#> weight sum 70 69
#> precision 0.0032 0.0032
#>
#> V48
#> mean 0.1155 0.0717
#> std. dev. 0.0704 0.0507
#> weight sum 70 69
#> precision 0.0022 0.0022
#>
#> V49
#> mean 0.0666 0.04
#> std. dev. 0.0374 0.0317
#> weight sum 70 69
#> precision 0.0015 0.0015
#>
#> V5
#> mean 0.0875 0.0616
#> std. dev. 0.0662 0.0459
#> weight sum 70 69
#> precision 0.0029 0.0029
#>
#> V50
#> mean 0.025 0.0178
#> std. dev. 0.0152 0.0133
#> weight sum 70 69
#> precision 0.0007 0.0007
#>
#> V51
#> mean 0.0205 0.0121
#> std. dev. 0.0122 0.0081
#> weight sum 70 69
#> precision 0.0007 0.0007
#>
#> V52
#> mean 0.0174 0.0103
#> std. dev. 0.0099 0.0062
#> weight sum 70 69
#> precision 0.0004 0.0004
#>
#> V53
#> mean 0.0127 0.01
#> std. dev. 0.008 0.0065
#> weight sum 70 69
#> precision 0.0004 0.0004
#>
#> V54
#> mean 0.013 0.0095
#> std. dev. 0.0086 0.0056
#> weight sum 70 69
#> precision 0.0003 0.0003
#>
#> V55
#> mean 0.0103 0.0087
#> std. dev. 0.0085 0.0056
#> weight sum 70 69
#> precision 0.0004 0.0004
#>
#> V56
#> mean 0.0096 0.0076
#> std. dev. 0.0067 0.0048
#> weight sum 70 69
#> precision 0.0004 0.0004
#>
#> V57
#> mean 0.0082 0.0076
#> std. dev. 0.0062 0.0059
#> weight sum 70 69
#> precision 0.0004 0.0004
#>
#> V58
#> mean 0.0097 0.0065
#> std. dev. 0.0074 0.0047
#> weight sum 70 69
#> precision 0.0004 0.0004
#>
#> V59
#> mean 0.0095 0.0069
#> std. dev. 0.0073 0.0049
#> weight sum 70 69
#> precision 0.0004 0.0004
#>
#> V6
#> mean 0.1165 0.0997
#> std. dev. 0.0578 0.0695
#> weight sum 70 69
#> precision 0.0028 0.0028
#>
#> V60
#> mean 0.0073 0.0059
#> std. dev. 0.0066 0.0037
#> weight sum 70 69
#> precision 0.0005 0.0005
#>
#> V7
#> mean 0.1369 0.1158
#> std. dev. 0.0614 0.0703
#> weight sum 70 69
#> precision 0.0028 0.0028
#>
#> V8
#> mean 0.151 0.1189
#> std. dev. 0.0849 0.0797
#> weight sum 70 69
#> precision 0.0034 0.0034
#>
#> V9
#> mean 0.2101 0.143
#> std. dev. 0.1176 0.0988
#> weight sum 70 69
#> precision 0.0047 0.0047
#>
#>
# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)
# Score the predictions
predictions$score()
#> classif.ce
#> 0.3333333