Classification Naive Bayes Learner From Weka
Source:R/learner_RWeka_classif_naive_bayes_weka.R
mlr_learners_classif.naive_bayes_weka.RdNaive Bayes Classifier Using Estimator Classes.
Calls RWeka::make_Weka_classifier() from RWeka.
Custom mlr3 parameters
output_debug_info:original id: output-debug-info
do_not_check_capabilities:original id: do-not-check-capabilities
num_decimal_places:original id: num-decimal-places
batch_size:original id: batch-size
Reason for change: This learner contains changed ids of the following control arguments since their ids contain irregular pattern
Parameters
| Id | Type | Default | Levels | Range |
| subset | untyped | - | - | |
| na.action | untyped | - | - | |
| K | logical | FALSE | TRUE, FALSE | - |
| D | logical | FALSE | TRUE, FALSE | - |
| O | logical | FALSE | TRUE, FALSE | - |
| output_debug_info | logical | FALSE | TRUE, FALSE | - |
| do_not_check_capabilities | logical | FALSE | TRUE, FALSE | - |
| num_decimal_places | integer | 2 | \([1, \infty)\) | |
| batch_size | integer | 100 | \([1, \infty)\) | |
| options | untyped | NULL | - |
References
John GH, Langley P (1995). “Estimating Continuous Distributions in Bayesian Classifiers.” In Eleventh Conference on Uncertainty in Artificial Intelligence, 338-345.
See also
as.data.table(mlr_learners)for a table of available Learners in the running session (depending on the loaded packages).Chapter in the mlr3book: https://mlr3book.mlr-org.com/basics.html#learners
mlr3learners for a selection of recommended learners.
mlr3cluster for unsupervised clustering learners.
mlr3pipelines to combine learners with pre- and postprocessing steps.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
Super classes
mlr3::Learner -> mlr3::LearnerClassif -> LearnerClassifNaiveBayesWeka
Methods
Inherited methods
mlr3::Learner$base_learner()mlr3::Learner$configure()mlr3::Learner$encapsulate()mlr3::Learner$format()mlr3::Learner$help()mlr3::Learner$predict()mlr3::Learner$predict_newdata()mlr3::Learner$print()mlr3::Learner$reset()mlr3::Learner$selected_features()mlr3::Learner$train()mlr3::LearnerClassif$predict_newdata_fast()
Method marshal()
Marshal the learner's model.
Arguments
...(any)
Additional arguments passed tomlr3::marshal_model().
Method unmarshal()
Unmarshal the learner's model.
Arguments
...(any)
Additional arguments passed tomlr3::unmarshal_model().
Examples
# Define the Learner
learner = lrn("classif.naive_bayes_weka")
print(learner)
#>
#> ── <LearnerClassifNaiveBayesWeka> (classif.naive_bayes_weka): Naive Bayes ──────
#> • Model: -
#> • Parameters: list()
#> • Packages: mlr3 and RWeka
#> • Predict Types: [response] and prob
#> • Feature Types: logical, integer, numeric, factor, and ordered
#> • Encapsulation: none (fallback: -)
#> • Properties: marshal, missings, multiclass, and twoclass
#> • Other settings: use_weights = 'error'
# Define a Task
task = tsk("sonar")
# Create train and test set
ids = partition(task)
# Train the learner on the training ids
learner$train(task, row_ids = ids$train)
print(learner$model)
#> Naive Bayes Classifier
#>
#> Class
#> Attribute M R
#> (0.5) (0.5)
#> ===============================
#> V1
#> mean 0.0357 0.0232
#> std. dev. 0.027 0.0142
#> weight sum 70 69
#> precision 0.0011 0.0011
#>
#> V10
#> mean 0.2619 0.1479
#> std. dev. 0.1325 0.103
#> weight sum 70 69
#> precision 0.005 0.005
#>
#> V11
#> mean 0.3032 0.1682
#> std. dev. 0.1259 0.1086
#> weight sum 70 69
#> precision 0.0052 0.0052
#>
#> V12
#> mean 0.3132 0.1901
#> std. dev. 0.1264 0.1278
#> weight sum 70 69
#> precision 0.0046 0.0046
#>
#> V13
#> mean 0.3324 0.2262
#> std. dev. 0.1357 0.1407
#> weight sum 70 69
#> precision 0.0051 0.0051
#>
#> V14
#> mean 0.3366 0.2745
#> std. dev. 0.1708 0.1699
#> weight sum 70 69
#> precision 0.0071 0.0071
#>
#> V15
#> mean 0.3342 0.3159
#> std. dev. 0.2072 0.2253
#> weight sum 70 69
#> precision 0.0073 0.0073
#>
#> V16
#> mean 0.3912 0.3835
#> std. dev. 0.2189 0.2594
#> weight sum 70 69
#> precision 0.007 0.007
#>
#> V17
#> mean 0.4414 0.418
#> std. dev. 0.2392 0.2932
#> weight sum 70 69
#> precision 0.0071 0.0071
#>
#> V18
#> mean 0.4947 0.4485
#> std. dev. 0.2525 0.2758
#> weight sum 70 69
#> precision 0.0071 0.0071
#>
#> V19
#> mean 0.5773 0.4769
#> std. dev. 0.248 0.2561
#> weight sum 70 69
#> precision 0.0069 0.0069
#>
#> V2
#> mean 0.0446 0.0293
#> std. dev. 0.0384 0.024
#> weight sum 70 69
#> precision 0.0018 0.0018
#>
#> V20
#> mean 0.6475 0.5059
#> std. dev. 0.2333 0.2604
#> weight sum 70 69
#> precision 0.0067 0.0067
#>
#> V21
#> mean 0.6975 0.5473
#> std. dev. 0.2316 0.2512
#> weight sum 70 69
#> precision 0.0071 0.0071
#>
#> V22
#> mean 0.7081 0.5927
#> std. dev. 0.2262 0.2562
#> weight sum 70 69
#> precision 0.0072 0.0072
#>
#> V23
#> mean 0.7089 0.6278
#> std. dev. 0.2566 0.2485
#> weight sum 70 69
#> precision 0.0071 0.0071
#>
#> V24
#> mean 0.7243 0.6501
#> std. dev. 0.2463 0.2378
#> weight sum 70 69
#> precision 0.0075 0.0075
#>
#> V25
#> mean 0.7127 0.6482
#> std. dev. 0.2275 0.2561
#> weight sum 70 69
#> precision 0.0075 0.0075
#>
#> V26
#> mean 0.7234 0.6783
#> std. dev. 0.2377 0.2277
#> weight sum 70 69
#> precision 0.0069 0.0069
#>
#> V27
#> mean 0.7124 0.6826
#> std. dev. 0.274 0.2138
#> weight sum 70 69
#> precision 0.0074 0.0074
#>
#> V28
#> mean 0.6944 0.665
#> std. dev. 0.2643 0.2077
#> weight sum 70 69
#> precision 0.0073 0.0073
#>
#> V29
#> mean 0.6415 0.6414
#> std. dev. 0.2436 0.221
#> weight sum 70 69
#> precision 0.0075 0.0075
#>
#> V3
#> mean 0.053 0.0355
#> std. dev. 0.0449 0.0276
#> weight sum 70 69
#> precision 0.0024 0.0024
#>
#> V30
#> mean 0.5648 0.6091
#> std. dev. 0.2032 0.2222
#> weight sum 70 69
#> precision 0.0069 0.0069
#>
#> V31
#> mean 0.4657 0.557
#> std. dev. 0.2089 0.1903
#> weight sum 70 69
#> precision 0.0067 0.0067
#>
#> V32
#> mean 0.4138 0.4681
#> std. dev. 0.2146 0.2084
#> weight sum 70 69
#> precision 0.0063 0.0063
#>
#> V33
#> mean 0.3895 0.4623
#> std. dev. 0.2017 0.2037
#> weight sum 70 69
#> precision 0.007 0.007
#>
#> V34
#> mean 0.3483 0.4668
#> std. dev. 0.2109 0.258
#> weight sum 70 69
#> precision 0.0068 0.0068
#>
#> V35
#> mean 0.3111 0.479
#> std. dev. 0.2334 0.2783
#> weight sum 70 69
#> precision 0.0072 0.0072
#>
#> V36
#> mean 0.2832 0.4949
#> std. dev. 0.2226 0.2715
#> weight sum 70 69
#> precision 0.0072 0.0072
#>
#> V37
#> mean 0.281 0.4363
#> std. dev. 0.2034 0.2356
#> weight sum 70 69
#> precision 0.0067 0.0067
#>
#> V38
#> mean 0.3057 0.3526
#> std. dev. 0.1817 0.2227
#> weight sum 70 69
#> precision 0.007 0.007
#>
#> V39
#> mean 0.3168 0.3128
#> std. dev. 0.1791 0.2155
#> weight sum 70 69
#> precision 0.007 0.007
#>
#> V4
#> mean 0.0661 0.0403
#> std. dev. 0.0566 0.0301
#> weight sum 70 69
#> precision 0.0034 0.0034
#>
#> V40
#> mean 0.2919 0.3268
#> std. dev. 0.1619 0.1988
#> weight sum 70 69
#> precision 0.0065 0.0065
#>
#> V41
#> mean 0.2719 0.2903
#> std. dev. 0.1579 0.1762
#> weight sum 70 69
#> precision 0.0055 0.0055
#>
#> V42
#> mean 0.272 0.2487
#> std. dev. 0.1626 0.1646
#> weight sum 70 69
#> precision 0.0059 0.0059
#>
#> V43
#> mean 0.2477 0.2159
#> std. dev. 0.1264 0.1371
#> weight sum 70 69
#> precision 0.0057 0.0057
#>
#> V44
#> mean 0.2303 0.1826
#> std. dev. 0.1341 0.1179
#> weight sum 70 69
#> precision 0.006 0.006
#>
#> V45
#> mean 0.2209 0.1457
#> std. dev. 0.1643 0.0999
#> weight sum 70 69
#> precision 0.0047 0.0047
#>
#> V46
#> mean 0.1735 0.1217
#> std. dev. 0.1344 0.0891
#> weight sum 70 69
#> precision 0.0047 0.0047
#>
#> V47
#> mean 0.1321 0.0999
#> std. dev. 0.0789 0.0629
#> weight sum 70 69
#> precision 0.0026 0.0026
#>
#> V48
#> mean 0.1028 0.0736
#> std. dev. 0.0585 0.0464
#> weight sum 70 69
#> precision 0.0021 0.0021
#>
#> V49
#> mean 0.0591 0.0397
#> std. dev. 0.0328 0.0286
#> weight sum 70 69
#> precision 0.0011 0.0011
#>
#> V5
#> mean 0.0881 0.0587
#> std. dev. 0.0592 0.0475
#> weight sum 70 69
#> precision 0.003 0.003
#>
#> V50
#> mean 0.0216 0.0188
#> std. dev. 0.0133 0.0119
#> weight sum 70 69
#> precision 0.0008 0.0008
#>
#> V51
#> mean 0.018 0.013
#> std. dev. 0.0095 0.0084
#> weight sum 70 69
#> precision 0.0004 0.0004
#>
#> V52
#> mean 0.0151 0.0101
#> std. dev. 0.0096 0.0068
#> weight sum 70 69
#> precision 0.0004 0.0004
#>
#> V53
#> mean 0.0114 0.0098
#> std. dev. 0.0082 0.0061
#> weight sum 70 69
#> precision 0.0004 0.0004
#>
#> V54
#> mean 0.0124 0.0097
#> std. dev. 0.0085 0.0057
#> weight sum 70 69
#> precision 0.0004 0.0004
#>
#> V55
#> mean 0.0098 0.0075
#> std. dev. 0.0085 0.0043
#> weight sum 70 69
#> precision 0.0005 0.0005
#>
#> V56
#> mean 0.0091 0.0076
#> std. dev. 0.0067 0.0045
#> weight sum 70 69
#> precision 0.0004 0.0004
#>
#> V57
#> mean 0.0078 0.0082
#> std. dev. 0.0062 0.0055
#> weight sum 70 69
#> precision 0.0004 0.0004
#>
#> V58
#> mean 0.009 0.0071
#> std. dev. 0.0082 0.0048
#> weight sum 70 69
#> precision 0.0005 0.0005
#>
#> V59
#> mean 0.0082 0.0074
#> std. dev. 0.0067 0.0052
#> weight sum 70 69
#> precision 0.0004 0.0004
#>
#> V6
#> mean 0.1135 0.0946
#> std. dev. 0.0488 0.0646
#> weight sum 70 69
#> precision 0.0029 0.0029
#>
#> V60
#> mean 0.0063 0.0062
#> std. dev. 0.0046 0.0038
#> weight sum 70 69
#> precision 0.0003 0.0003
#>
#> V7
#> mean 0.1311 0.1138
#> std. dev. 0.0542 0.065
#> weight sum 70 69
#> precision 0.0028 0.0028
#>
#> V8
#> mean 0.15 0.1179
#> std. dev. 0.0736 0.079
#> weight sum 70 69
#> precision 0.0031 0.0031
#>
#> V9
#> mean 0.2191 0.1324
#> std. dev. 0.1088 0.0955
#> weight sum 70 69
#> precision 0.0042 0.0042
#>
#>
# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)
# Score the predictions
predictions$score()
#> classif.ce
#> 0.3188406