Classification Priority Lasso Learner
mlr_learners_classif.priority_lasso.Rd
Patient outcome prediction based on multi-omics data taking practitioners’ preferences into account.
Calls prioritylasso::prioritylasso()
from prioritylasso.
Dictionary
This Learner can be instantiated via the dictionary mlr_learners or with the associated sugar function lrn()
:
$get("classif.priority_lasso")
mlr_learnerslrn("classif.priority_lasso")
Meta Information
Task type: “classif”
Predict Types: “response”, “prob”
Feature Types: “logical”, “integer”, “numeric”
Required Packages: mlr3, prioritylasso
Parameters
Id | Type | Default | Levels | Range |
blocks | untyped | - | ||
type.measure | character | class | class, auc | - |
max.coef | untyped | - | ||
block1.penalization | logical | TRUE | TRUE, FALSE | - |
lambda.type | character | lambda.min | lambda.min, lambda.1se | - |
standardize | logical | TRUE | TRUE, FALSE | - |
nfolds | integer | 5 | \([1, \infty)\) | |
foldid | untyped | - | ||
cvoffset | logical | FALSE | TRUE, FALSE | - |
cvoffsetnfolds | integer | 10 | \([1, \infty)\) | |
alignment | character | lambda | lambda, fraction | - |
alpha | numeric | 1 | \([0, 1]\) | |
big | numeric | 9.9e+35 | \((-\infty, \infty)\) | |
devmax | numeric | 0.999 | \([0, 1]\) | |
dfmax | integer | - | \([0, \infty)\) | |
eps | numeric | 1e-06 | \([0, 1]\) | |
epsnr | numeric | 1e-08 | \([0, 1]\) | |
exclude | untyped | - | - | |
exmx | numeric | 250 | \((-\infty, \infty)\) | |
fdev | numeric | 1e-05 | \([0, 1]\) | |
gamma | untyped | - | - | |
grouped | logical | TRUE | TRUE, FALSE | - |
intercept | logical | TRUE | TRUE, FALSE | - |
keep | logical | FALSE | TRUE, FALSE | - |
lambda | untyped | - | - | |
lambda.min.ratio | numeric | - | \([0, 1]\) | |
lower.limits | untyped | - , Inf | - | |
maxit | integer | 100000 | \([1, \infty)\) | |
mnlam | integer | 5 | \([1, \infty)\) | |
mxit | integer | 100 | \([1, \infty)\) | |
mxitnr | integer | 25 | \([1, \infty)\) | |
nlambda | integer | 100 | \([1, \infty)\) | |
offset | untyped | - | ||
parallel | logical | FALSE | TRUE, FALSE | - |
penalty.factor | untyped | - | - | |
pmax | integer | - | \([0, \infty)\) | |
pmin | numeric | 1e-09 | \([0, 1]\) | |
prec | numeric | 1e-10 | \((-\infty, \infty)\) | |
predict.gamma | numeric | gamma.1se | \((-\infty, \infty)\) | |
relax | logical | FALSE | TRUE, FALSE | - |
s | numeric | lambda.1se | \([0, 1]\) | |
standardize.response | logical | FALSE | TRUE, FALSE | - |
thresh | numeric | 1e-07 | \([0, \infty)\) | |
trace.it | integer | 0 | \([0, 1]\) | |
type.gaussian | character | - | covariance, naive | - |
type.logistic | character | Newton | Newton, modified.Newton | - |
type.multinomial | character | ungrouped | ungrouped, grouped | - |
upper.limits | untyped | Inf | - |
References
Simon K, Vindi J, Roman H, Tobias H, Anne-Laure B (2018). “Priority-Lasso: a simple hierarchical approach to the prediction of clinical outcome using multi-omics data.” BMC Bioinformatics, 19. doi:10.1186/s12859-018-2344-6 .
See also
as.data.table(mlr_learners)
for a table of available Learners in the running session (depending on the loaded packages).Chapter in the mlr3book: https://mlr3book.mlr-org.com/basics.html#learners
mlr3learners for a selection of recommended learners.
mlr3cluster for unsupervised clustering learners.
mlr3pipelines to combine learners with pre- and postprocessing steps.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
Super classes
mlr3::Learner
-> mlr3::LearnerClassif
-> LearnerClassifPriorityLasso
Methods
Examples
learner = mlr3::lrn("classif.priority_lasso")
print(learner)
#> <LearnerClassifPriorityLasso:classif.priority_lasso>: Priority Lasso
#> * Model: -
#> * Parameters: list()
#> * Packages: mlr3, prioritylasso
#> * Predict Types: [response], prob
#> * Feature Types: logical, integer, numeric
#> * Properties: selected_features, twoclass, weights
# available parameters:
learner$param_set$ids()
#> [1] "blocks" "type.measure" "max.coef"
#> [4] "block1.penalization" "lambda.type" "standardize"
#> [7] "nfolds" "foldid" "cvoffset"
#> [10] "cvoffsetnfolds" "alignment" "alpha"
#> [13] "big" "devmax" "dfmax"
#> [16] "eps" "epsnr" "exclude"
#> [19] "exmx" "fdev" "gamma"
#> [22] "grouped" "intercept" "keep"
#> [25] "lambda" "lambda.min.ratio" "lower.limits"
#> [28] "maxit" "mnlam" "mxit"
#> [31] "mxitnr" "nlambda" "offset"
#> [34] "parallel" "penalty.factor" "pmax"
#> [37] "pmin" "prec" "predict.gamma"
#> [40] "relax" "s" "standardize.response"
#> [43] "thresh" "trace.it" "type.gaussian"
#> [46] "type.logistic" "type.multinomial" "upper.limits"