Random Ferns Classification Learner
Source:R/learner_rFerns_classif_rFerns.R
mlr_learners_classif.rFerns.RdEnsemble machine learning algorithm based on Random Ferns, which are a simplified,
faster alternative to Random Forests.
Calls rFerns::rFerns() from rFerns.
Initial parameter values
importance:Actual default:
FALSEInitial value:
"simple"Reason for change: The default value of
FALSEwill resolve to "none", which turns importance calculation off. To enable importance calculation by default,importanceis set to"simple".
Meta Information
Task type: “classif”
Predict Types: “response”
Feature Types: “integer”, “numeric”, “factor”, “ordered”
Required Packages: mlr3, mlr3extralearners, rFerns
Parameters
| Id | Type | Default | Levels | Range |
| consistentSeed | untyped | NULL | - | |
| depth | integer | 5 | \([1, 16]\) | |
| ferns | integer | 1000 | \((-\infty, \infty)\) | |
| importance | untyped | FALSE | - | |
| saveForest | logical | TRUE | TRUE, FALSE | - |
| threads | integer | 0 | \((-\infty, \infty)\) |
References
Kursa MB (2014). “rFerns: An Implementation of the Random Ferns Method for General-Purpose Machine Learning.” Journal of Statistical Software, 61(10), 1–13. https://www.jstatsoft.org/v61/i10/.
Ozuysal, Mustafa, Calonder, Michael, Lepetit, Vincent, Fua, Pascal (2010). “Fast Keypoint Recognition Using Random Ferns.” IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(3), 448-461. doi:10.1109/TPAMI.2009.23 .
See also
as.data.table(mlr_learners)for a table of available Learners in the running session (depending on the loaded packages).Chapter in the mlr3book: https://mlr3book.mlr-org.com/basics.html#learners
mlr3learners for a selection of recommended learners.
mlr3cluster for unsupervised clustering learners.
mlr3pipelines to combine learners with pre- and postprocessing steps.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
Super classes
mlr3::Learner -> mlr3::LearnerClassif -> LearnerClassifRferns
Methods
Inherited methods
mlr3::Learner$base_learner()mlr3::Learner$configure()mlr3::Learner$encapsulate()mlr3::Learner$format()mlr3::Learner$help()mlr3::Learner$predict()mlr3::Learner$predict_newdata()mlr3::Learner$print()mlr3::Learner$reset()mlr3::Learner$selected_features()mlr3::Learner$train()mlr3::LearnerClassif$predict_newdata_fast()
Method importance()
The importance scores are extracted from the model slot importance.
Returns
Named numeric().
Examples
# Define the Learner
learner = lrn("classif.rFerns")
print(learner)
#>
#> ── <LearnerClassifRferns> (classif.rFerns): Random Ferns Classifier ────────────
#> • Model: -
#> • Parameters: importance=simple
#> • Packages: mlr3, mlr3extralearners, and rFerns
#> • Predict Types: [response]
#> • Feature Types: integer, numeric, factor, and ordered
#> • Encapsulation: none (fallback: -)
#> • Properties: importance, multiclass, oob_error, and twoclass
#> • Other settings: use_weights = 'error'
# Define a Task
task = tsk("sonar")
# Create train and test set
ids = partition(task)
# Train the learner on the training ids
learner$train(task, row_ids = ids$train)
print(learner$model)
#>
#> Forest of 1000 ferns of a depth 5.
#>
#> OOB error 15.11%; OOB confusion matrix:
#> True
#> Predicted M R
#> M 66 10
#> R 11 52
print(learner$importance())
#> V10 V12 V11 V20 V13 V49
#> 0.1437897160 0.1388430309 0.1303524717 0.0892176145 0.0840195803 0.0804538853
#> V9 V48 V21 V47 V36 V22
#> 0.0760617067 0.0743753675 0.0704739693 0.0636759496 0.0565312811 0.0462393676
#> V46 V28 V27 V52 V45 V37
#> 0.0431798539 0.0427354073 0.0404844784 0.0398103911 0.0391336566 0.0376317559
#> V51 V4 V43 V31 V19 V8
#> 0.0369777038 0.0363655526 0.0343293514 0.0307717471 0.0302279512 0.0295732442
#> V14 V18 V42 V5 V1 V32
#> 0.0295426942 0.0286590754 0.0279059021 0.0275149494 0.0261439597 0.0257058446
#> V26 V6 V34 V15 V30 V44
#> 0.0253048476 0.0247364184 0.0239805304 0.0239537115 0.0238390434 0.0229782262
#> V29 V35 V59 V58 V16 V17
#> 0.0222218678 0.0203595674 0.0197668464 0.0195425806 0.0187575947 0.0184572005
#> V3 V33 V25 V53 V23 V56
#> 0.0183238171 0.0181112725 0.0166889101 0.0158553827 0.0145880514 0.0138739185
#> V2 V24 V39 V41 V60 V40
#> 0.0128480948 0.0108924913 0.0090994101 0.0090542381 0.0088244455 0.0086452781
#> V38 V55 V50 V54 V7 V57
#> 0.0078896682 0.0076400280 0.0066980276 0.0042290617 0.0020415816 0.0009862199
# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)
# Score the predictions
predictions$score()
#> classif.ce
#> 0.2318841