Skip to contents

Random forest for classification. Calls randomForest::randomForest() from randomForest.

Dictionary

This Learner can be instantiated via lrn():

lrn("classif.randomForest")

Meta Information

  • Task type: “classif”

  • Predict Types: “response”, “prob”

  • Feature Types: “logical”, “integer”, “numeric”, “factor”, “ordered”

  • Required Packages: mlr3, mlr3extralearners, randomForest

Parameters

IdTypeDefaultLevelsRange
ntreeinteger500\([1, \infty)\)
mtryinteger-\([1, \infty)\)
replacelogicalTRUETRUE, FALSE-
classwtuntypedNULL-
cutoffuntyped--
stratauntyped--
sampsizeuntyped--
nodesizeinteger1\([1, \infty)\)
maxnodesinteger-\([1, \infty)\)
importancecharacterFALSEaccuracy, gini, none-
localImplogicalFALSETRUE, FALSE-
proximitylogicalFALSETRUE, FALSE-
oob.proxlogical-TRUE, FALSE-
norm.voteslogicalTRUETRUE, FALSE-
do.tracelogicalFALSETRUE, FALSE-
keep.forestlogicalTRUETRUE, FALSE-
keep.inbaglogicalFALSETRUE, FALSE-
predict.alllogicalFALSETRUE, FALSE-
nodeslogicalFALSETRUE, FALSE-

References

Breiman, Leo (2001). “Random Forests.” Machine Learning, 45(1), 5–32. ISSN 1573-0565, doi:10.1023/A:1010933404324 .

See also

Author

pat-s

Super classes

mlr3::Learner -> mlr3::LearnerClassif -> LearnerClassifRandomForest

Methods

Inherited methods


Method new()

Creates a new instance of this R6 class.


Method importance()

The importance scores are extracted from the slot importance. Parameter 'importance' must be set to either "accuracy" or "gini".

Usage

LearnerClassifRandomForest$importance()

Returns

Named numeric().


Method oob_error()

OOB errors are extracted from the model slot err.rate.

Usage

LearnerClassifRandomForest$oob_error()

Returns

numeric(1).


Method clone()

The objects of this class are cloneable with this method.

Usage

LearnerClassifRandomForest$clone(deep = FALSE)

Arguments

deep

Whether to make a deep clone.

Examples

# Define the Learner
learner = lrn("classif.randomForest", importance = "accuracy")
print(learner)
#> 
#> ── <LearnerClassifRandomForest> (classif.randomForest): Random Forest ──────────
#> • Model: -
#> • Parameters: importance=accuracy
#> • Packages: mlr3, mlr3extralearners, and randomForest
#> • Predict Types: [response] and prob
#> • Feature Types: logical, integer, numeric, factor, and ordered
#> • Encapsulation: none (fallback: -)
#> • Properties: importance, multiclass, oob_error, twoclass, and weights
#> • Other settings: use_weights = 'use'

# Define a Task
task = tsk("sonar")
# Create train and test set
ids = partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)
#> 
#> Call:
#>  randomForest(formula = formula, data = data, classwt = classwt,      cutoff = cutoff, importance = TRUE) 
#>                Type of random forest: classification
#>                      Number of trees: 500
#> No. of variables tried at each split: 7
#> 
#>         OOB estimate of  error rate: 18.71%
#> Confusion matrix:
#>    M  R class.error
#> M 67  9   0.1184211
#> R 17 46   0.2698413
print(learner$importance())
#>           V11           V12            V9           V21           V36 
#>  2.093368e-02  2.033920e-02  1.499833e-02  1.261272e-02  9.718174e-03 
#>           V10           V20           V48           V49           V52 
#>  9.227129e-03  7.955436e-03  7.621350e-03  7.375204e-03  7.274579e-03 
#>           V47           V28           V46           V44           V13 
#>  7.110739e-03  7.022513e-03  5.746556e-03  5.298463e-03  5.041573e-03 
#>           V45            V4            V2            V1            V3 
#>  4.651670e-03  4.195351e-03  3.928552e-03  3.473824e-03  3.248868e-03 
#>           V23           V17           V22           V29           V27 
#>  3.135670e-03  3.047875e-03  3.029291e-03  2.864109e-03  2.862662e-03 
#>           V16           V18           V37           V51           V24 
#>  2.548219e-03  2.512321e-03  2.410653e-03  2.156672e-03  2.144089e-03 
#>           V58           V35           V31           V53           V38 
#>  2.006558e-03  1.998529e-03  1.989742e-03  1.895505e-03  1.759842e-03 
#>           V30            V5           V19           V55            V8 
#>  1.747926e-03  1.677722e-03  1.649263e-03  1.644565e-03  1.613917e-03 
#>           V50           V43           V32           V59           V14 
#>  1.495451e-03  1.342953e-03  1.325719e-03  1.297668e-03  1.281629e-03 
#>            V6           V15           V42           V39           V34 
#>  1.277507e-03  1.167969e-03  1.070807e-03  1.063727e-03  1.058554e-03 
#>           V57           V40           V41           V56           V26 
#>  1.031828e-03  9.698351e-04  9.426002e-04  8.946416e-04  8.072179e-04 
#>           V25           V54           V33            V7           V60 
#>  6.588691e-04  3.628683e-04  5.727327e-05  2.959210e-05 -9.443831e-04 

# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()
#> classif.ce 
#>  0.2173913