Classification Random Forest Learner
mlr_learners_classif.randomForest.Rd
Random forest for classification.
Calls randomForest::randomForest()
from randomForest.
Meta Information
Task type: “classif”
Predict Types: “response”, “prob”
Feature Types: “logical”, “integer”, “numeric”, “factor”, “ordered”
Required Packages: mlr3, mlr3extralearners, randomForest
Parameters
Id | Type | Default | Levels | Range |
ntree | integer | 500 | \([1, \infty)\) | |
mtry | integer | - | \([1, \infty)\) | |
replace | logical | TRUE | TRUE, FALSE | - |
classwt | untyped | NULL | - | |
cutoff | untyped | - | - | |
strata | untyped | - | - | |
sampsize | untyped | - | - | |
nodesize | integer | 1 | \([1, \infty)\) | |
maxnodes | integer | - | \([1, \infty)\) | |
importance | character | FALSE | accuracy, gini, none | - |
localImp | logical | FALSE | TRUE, FALSE | - |
proximity | logical | FALSE | TRUE, FALSE | - |
oob.prox | logical | - | TRUE, FALSE | - |
norm.votes | logical | TRUE | TRUE, FALSE | - |
do.trace | logical | FALSE | TRUE, FALSE | - |
keep.forest | logical | TRUE | TRUE, FALSE | - |
keep.inbag | logical | FALSE | TRUE, FALSE | - |
predict.all | logical | FALSE | TRUE, FALSE | - |
nodes | logical | FALSE | TRUE, FALSE | - |
References
Breiman, Leo (2001). “Random Forests.” Machine Learning, 45(1), 5–32. ISSN 1573-0565, doi:10.1023/A:1010933404324 .
See also
as.data.table(mlr_learners)
for a table of available Learners in the running session (depending on the loaded packages).Chapter in the mlr3book: https://mlr3book.mlr-org.com/basics.html#learners
mlr3learners for a selection of recommended learners.
mlr3cluster for unsupervised clustering learners.
mlr3pipelines to combine learners with pre- and postprocessing steps.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
Super classes
mlr3::Learner
-> mlr3::LearnerClassif
-> LearnerClassifRandomForest
Methods
Method importance()
The importance scores are extracted from the slot importance
.
Parameter 'importance' must be set to either "accuracy"
or "gini"
.
Returns
Named numeric()
.
Examples
# Define the Learner
learner = mlr3::lrn("classif.randomForest", importance = "accuracy")
print(learner)
#> <LearnerClassifRandomForest:classif.randomForest>: Random Forest
#> * Model: -
#> * Parameters: importance=accuracy
#> * Packages: mlr3, mlr3extralearners, randomForest
#> * Predict Types: [response], prob
#> * Feature Types: logical, integer, numeric, factor, ordered
#> * Properties: importance, multiclass, oob_error, twoclass, weights
# Define a Task
task = mlr3::tsk("sonar")
# Create train and test set
ids = mlr3::partition(task)
# Train the learner on the training ids
learner$train(task, row_ids = ids$train)
print(learner$model)
#>
#> Call:
#> randomForest(formula = formula, data = data, classwt = classwt, cutoff = cutoff, importance = TRUE)
#> Type of random forest: classification
#> Number of trees: 500
#> No. of variables tried at each split: 7
#>
#> OOB estimate of error rate: 16.55%
#> Confusion matrix:
#> M R class.error
#> M 72 6 0.07692308
#> R 17 44 0.27868852
print(learner$importance())
#> V11 V12 V9 V10 V51
#> 3.315535e-02 2.300663e-02 2.259985e-02 1.622792e-02 1.030349e-02
#> V36 V49 V13 V4 V47
#> 9.316545e-03 7.991834e-03 7.914133e-03 7.520963e-03 7.134379e-03
#> V21 V48 V34 V46 V45
#> 6.304167e-03 5.476671e-03 4.791380e-03 4.756388e-03 4.711105e-03
#> V8 V20 V37 V28 V31
#> 4.378724e-03 4.223794e-03 3.888425e-03 3.784626e-03 3.579800e-03
#> V16 V23 V30 V35 V15
#> 3.427552e-03 3.124478e-03 3.013062e-03 2.843649e-03 2.243705e-03
#> V1 V27 V22 V33 V32
#> 2.166332e-03 2.158773e-03 2.103045e-03 1.987891e-03 1.846971e-03
#> V6 V44 V17 V26 V52
#> 1.846549e-03 1.840895e-03 1.799067e-03 1.757556e-03 1.711575e-03
#> V42 V3 V14 V18 V5
#> 1.662913e-03 1.495564e-03 1.323870e-03 1.222602e-03 1.136574e-03
#> V58 V7 V60 V38 V2
#> 1.041699e-03 1.019123e-03 9.837200e-04 9.118684e-04 9.075802e-04
#> V53 V54 V40 V19 V29
#> 8.719732e-04 6.968688e-04 6.658135e-04 6.466411e-04 5.947849e-04
#> V43 V39 V25 V24 V56
#> 5.632690e-04 2.965314e-04 2.937429e-04 2.455842e-04 1.647085e-04
#> V41 V50 V59 V55 V57
#> 9.185076e-05 5.329999e-05 2.870137e-05 -1.868396e-04 -5.118505e-04
# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)
# Score the predictions
predictions$score()
#> classif.ce
#> 0.2463768