Classification Random Forest Learner
Source:R/learner_randomForest_classif_randomForest.R
mlr_learners_classif.randomForest.RdRandom forest for classification.
Calls randomForest::randomForest() from randomForest.
Meta Information
Task type: “classif”
Predict Types: “response”, “prob”
Feature Types: “logical”, “integer”, “numeric”, “factor”, “ordered”
Required Packages: mlr3, mlr3extralearners, randomForest
Parameters
| Id | Type | Default | Levels | Range |
| ntree | integer | 500 | \([1, \infty)\) | |
| mtry | integer | - | \([1, \infty)\) | |
| replace | logical | TRUE | TRUE, FALSE | - |
| classwt | untyped | NULL | - | |
| cutoff | untyped | - | - | |
| strata | untyped | - | - | |
| sampsize | untyped | - | - | |
| nodesize | integer | 1 | \([1, \infty)\) | |
| maxnodes | integer | - | \([1, \infty)\) | |
| importance | character | FALSE | accuracy, gini, none | - |
| localImp | logical | FALSE | TRUE, FALSE | - |
| proximity | logical | FALSE | TRUE, FALSE | - |
| oob.prox | logical | - | TRUE, FALSE | - |
| norm.votes | logical | TRUE | TRUE, FALSE | - |
| do.trace | logical | FALSE | TRUE, FALSE | - |
| keep.forest | logical | TRUE | TRUE, FALSE | - |
| keep.inbag | logical | FALSE | TRUE, FALSE | - |
| predict.all | logical | FALSE | TRUE, FALSE | - |
| nodes | logical | FALSE | TRUE, FALSE | - |
References
Breiman, Leo (2001). “Random Forests.” Machine Learning, 45(1), 5–32. ISSN 1573-0565, doi:10.1023/A:1010933404324 .
See also
as.data.table(mlr_learners)for a table of available Learners in the running session (depending on the loaded packages).Chapter in the mlr3book: https://mlr3book.mlr-org.com/basics.html#learners
mlr3learners for a selection of recommended learners.
mlr3cluster for unsupervised clustering learners.
mlr3pipelines to combine learners with pre- and postprocessing steps.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
Super classes
mlr3::Learner -> mlr3::LearnerClassif -> LearnerClassifRandomForest
Methods
Inherited methods
mlr3::Learner$base_learner()mlr3::Learner$configure()mlr3::Learner$encapsulate()mlr3::Learner$format()mlr3::Learner$help()mlr3::Learner$predict()mlr3::Learner$predict_newdata()mlr3::Learner$print()mlr3::Learner$reset()mlr3::Learner$selected_features()mlr3::Learner$train()mlr3::LearnerClassif$predict_newdata_fast()
Method importance()
The importance scores are extracted from the slot importance.
Parameter 'importance' must be set to either "accuracy" or "gini".
Returns
Named numeric().
Examples
# Define the Learner
learner = lrn("classif.randomForest", importance = "accuracy")
print(learner)
#>
#> ── <LearnerClassifRandomForest> (classif.randomForest): Random Forest ──────────
#> • Model: -
#> • Parameters: importance=accuracy
#> • Packages: mlr3, mlr3extralearners, and randomForest
#> • Predict Types: [response] and prob
#> • Feature Types: logical, integer, numeric, factor, and ordered
#> • Encapsulation: none (fallback: -)
#> • Properties: importance, multiclass, oob_error, twoclass, and weights
#> • Other settings: use_weights = 'use'
# Define a Task
task = tsk("sonar")
# Create train and test set
ids = partition(task)
# Train the learner on the training ids
learner$train(task, row_ids = ids$train)
print(learner$model)
#>
#> Call:
#> randomForest(formula = formula, data = data, classwt = classwt, cutoff = cutoff, importance = TRUE)
#> Type of random forest: classification
#> Number of trees: 500
#> No. of variables tried at each split: 7
#>
#> OOB estimate of error rate: 17.99%
#> Confusion matrix:
#> M R class.error
#> M 64 7 0.09859155
#> R 18 50 0.26470588
print(learner$importance())
#> V9 V10 V12 V11 V28
#> 2.627336e-02 2.478042e-02 2.119869e-02 1.974508e-02 9.314832e-03
#> V13 V47 V48 V45 V36
#> 9.079802e-03 8.331057e-03 8.260168e-03 7.183649e-03 7.162568e-03
#> V49 V21 V1 V46 V37
#> 6.150109e-03 6.027125e-03 4.855365e-03 4.548017e-03 4.440400e-03
#> V27 V16 V17 V52 V15
#> 4.240613e-03 3.593396e-03 3.544870e-03 3.204795e-03 3.080133e-03
#> V4 V20 V18 V14 V22
#> 3.037364e-03 3.001142e-03 2.746915e-03 2.557825e-03 2.441505e-03
#> V29 V2 V26 V8 V54
#> 2.338893e-03 2.066339e-03 2.014299e-03 1.892634e-03 1.729976e-03
#> V44 V35 V25 V43 V32
#> 1.729250e-03 1.720608e-03 1.621198e-03 1.546219e-03 1.439228e-03
#> V42 V55 V34 V39 V31
#> 1.332332e-03 1.321848e-03 1.277657e-03 1.173559e-03 1.043781e-03
#> V38 V30 V51 V23 V24
#> 1.037855e-03 1.007311e-03 8.930589e-04 7.966157e-04 7.678199e-04
#> V33 V58 V6 V41 V60
#> 7.408285e-04 6.721323e-04 6.401233e-04 4.745014e-04 4.286692e-04
#> V19 V3 V53 V57 V59
#> 4.082866e-04 2.896525e-04 1.221171e-04 9.857921e-05 -5.304902e-05
#> V50 V7 V40 V5 V56
#> -6.081153e-05 -2.217990e-04 -2.487332e-04 -2.751495e-04 -5.796463e-04
# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)
# Score the predictions
predictions$score()
#> classif.ce
#> 0.2753623