Skip to contents

Random forest for classification. Calls randomForest::randomForest() from randomForest.

Dictionary

This Learner can be instantiated via lrn():

lrn("classif.randomForest")

Meta Information

  • Task type: “classif”

  • Predict Types: “response”, “prob”

  • Feature Types: “logical”, “integer”, “numeric”, “factor”, “ordered”

  • Required Packages: mlr3, mlr3extralearners, randomForest

Parameters

IdTypeDefaultLevelsRange
ntreeinteger500\([1, \infty)\)
mtryinteger-\([1, \infty)\)
replacelogicalTRUETRUE, FALSE-
classwtuntypedNULL-
cutoffuntyped--
stratauntyped--
sampsizeuntyped--
nodesizeinteger1\([1, \infty)\)
maxnodesinteger-\([1, \infty)\)
importancecharacterFALSEaccuracy, gini, none-
localImplogicalFALSETRUE, FALSE-
proximitylogicalFALSETRUE, FALSE-
oob.proxlogical-TRUE, FALSE-
norm.voteslogicalTRUETRUE, FALSE-
do.tracelogicalFALSETRUE, FALSE-
keep.forestlogicalTRUETRUE, FALSE-
keep.inbaglogicalFALSETRUE, FALSE-
predict.alllogicalFALSETRUE, FALSE-
nodeslogicalFALSETRUE, FALSE-

References

Breiman, Leo (2001). “Random Forests.” Machine Learning, 45(1), 5–32. ISSN 1573-0565, doi:10.1023/A:1010933404324 .

See also

Author

pat-s

Super classes

mlr3::Learner -> mlr3::LearnerClassif -> LearnerClassifRandomForest

Methods

Inherited methods


Method new()

Creates a new instance of this R6 class.


Method importance()

The importance scores are extracted from the slot importance. Parameter 'importance' must be set to either "accuracy" or "gini".

Usage

LearnerClassifRandomForest$importance()

Returns

Named numeric().


Method oob_error()

OOB errors are extracted from the model slot err.rate.

Usage

LearnerClassifRandomForest$oob_error()

Returns

numeric(1).


Method clone()

The objects of this class are cloneable with this method.

Usage

LearnerClassifRandomForest$clone(deep = FALSE)

Arguments

deep

Whether to make a deep clone.

Examples

# Define the Learner
learner = lrn("classif.randomForest", importance = "accuracy")
print(learner)
#> 
#> ── <LearnerClassifRandomForest> (classif.randomForest): Random Forest ──────────
#> • Model: -
#> • Parameters: importance=accuracy
#> • Packages: mlr3, mlr3extralearners, and randomForest
#> • Predict Types: [response] and prob
#> • Feature Types: logical, integer, numeric, factor, and ordered
#> • Encapsulation: none (fallback: -)
#> • Properties: importance, multiclass, oob_error, twoclass, and weights
#> • Other settings: use_weights = 'use'

# Define a Task
task = tsk("sonar")
# Create train and test set
ids = partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)
#> 
#> Call:
#>  randomForest(formula = formula, data = data, classwt = classwt,      cutoff = cutoff, importance = TRUE) 
#>                Type of random forest: classification
#>                      Number of trees: 500
#> No. of variables tried at each split: 7
#> 
#>         OOB estimate of  error rate: 17.99%
#> Confusion matrix:
#>    M  R class.error
#> M 64  7  0.09859155
#> R 18 50  0.26470588
print(learner$importance())
#>            V9           V10           V12           V11           V28 
#>  2.627336e-02  2.478042e-02  2.119869e-02  1.974508e-02  9.314832e-03 
#>           V13           V47           V48           V45           V36 
#>  9.079802e-03  8.331057e-03  8.260168e-03  7.183649e-03  7.162568e-03 
#>           V49           V21            V1           V46           V37 
#>  6.150109e-03  6.027125e-03  4.855365e-03  4.548017e-03  4.440400e-03 
#>           V27           V16           V17           V52           V15 
#>  4.240613e-03  3.593396e-03  3.544870e-03  3.204795e-03  3.080133e-03 
#>            V4           V20           V18           V14           V22 
#>  3.037364e-03  3.001142e-03  2.746915e-03  2.557825e-03  2.441505e-03 
#>           V29            V2           V26            V8           V54 
#>  2.338893e-03  2.066339e-03  2.014299e-03  1.892634e-03  1.729976e-03 
#>           V44           V35           V25           V43           V32 
#>  1.729250e-03  1.720608e-03  1.621198e-03  1.546219e-03  1.439228e-03 
#>           V42           V55           V34           V39           V31 
#>  1.332332e-03  1.321848e-03  1.277657e-03  1.173559e-03  1.043781e-03 
#>           V38           V30           V51           V23           V24 
#>  1.037855e-03  1.007311e-03  8.930589e-04  7.966157e-04  7.678199e-04 
#>           V33           V58            V6           V41           V60 
#>  7.408285e-04  6.721323e-04  6.401233e-04  4.745014e-04  4.286692e-04 
#>           V19            V3           V53           V57           V59 
#>  4.082866e-04  2.896525e-04  1.221171e-04  9.857921e-05 -5.304902e-05 
#>           V50            V7           V40            V5           V56 
#> -6.081153e-05 -2.217990e-04 -2.487332e-04 -2.751495e-04 -5.796463e-04 

# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()
#> classif.ce 
#>  0.2753623