Classification Random Forest Learner
Source:R/learner_randomForest_classif_randomForest.R
mlr_learners_classif.randomForest.RdRandom forest for classification.
Calls randomForest::randomForest() from randomForest.
Meta Information
Task type: “classif”
Predict Types: “response”, “prob”
Feature Types: “logical”, “integer”, “numeric”, “factor”, “ordered”
Required Packages: mlr3, mlr3extralearners, randomForest
Parameters
| Id | Type | Default | Levels | Range |
| ntree | integer | 500 | \([1, \infty)\) | |
| mtry | integer | - | \([1, \infty)\) | |
| replace | logical | TRUE | TRUE, FALSE | - |
| classwt | untyped | NULL | - | |
| cutoff | untyped | - | - | |
| strata | untyped | - | - | |
| sampsize | untyped | - | - | |
| nodesize | integer | 1 | \([1, \infty)\) | |
| maxnodes | integer | - | \([1, \infty)\) | |
| importance | character | FALSE | accuracy, gini, none | - |
| localImp | logical | FALSE | TRUE, FALSE | - |
| proximity | logical | FALSE | TRUE, FALSE | - |
| oob.prox | logical | - | TRUE, FALSE | - |
| norm.votes | logical | TRUE | TRUE, FALSE | - |
| do.trace | logical | FALSE | TRUE, FALSE | - |
| keep.forest | logical | TRUE | TRUE, FALSE | - |
| keep.inbag | logical | FALSE | TRUE, FALSE | - |
| predict.all | logical | FALSE | TRUE, FALSE | - |
| nodes | logical | FALSE | TRUE, FALSE | - |
References
Breiman, Leo (2001). “Random Forests.” Machine Learning, 45(1), 5–32. ISSN 1573-0565, doi:10.1023/A:1010933404324 .
See also
as.data.table(mlr_learners)for a table of available Learners in the running session (depending on the loaded packages).Chapter in the mlr3book: https://mlr3book.mlr-org.com/basics.html#learners
mlr3learners for a selection of recommended learners.
mlr3cluster for unsupervised clustering learners.
mlr3pipelines to combine learners with pre- and postprocessing steps.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
Super classes
mlr3::Learner -> mlr3::LearnerClassif -> LearnerClassifRandomForest
Methods
Inherited methods
mlr3::Learner$base_learner()mlr3::Learner$configure()mlr3::Learner$encapsulate()mlr3::Learner$format()mlr3::Learner$help()mlr3::Learner$predict()mlr3::Learner$predict_newdata()mlr3::Learner$print()mlr3::Learner$reset()mlr3::Learner$selected_features()mlr3::Learner$train()mlr3::LearnerClassif$predict_newdata_fast()
Method importance()
The importance scores are extracted from the slot importance.
Parameter 'importance' must be set to either "accuracy" or "gini".
Returns
Named numeric().
Examples
# Define the Learner
learner = lrn("classif.randomForest", importance = "accuracy")
print(learner)
#>
#> ── <LearnerClassifRandomForest> (classif.randomForest): Random Forest ──────────
#> • Model: -
#> • Parameters: importance=accuracy
#> • Packages: mlr3, mlr3extralearners, and randomForest
#> • Predict Types: [response] and prob
#> • Feature Types: logical, integer, numeric, factor, and ordered
#> • Encapsulation: none (fallback: -)
#> • Properties: importance, multiclass, oob_error, twoclass, and weights
#> • Other settings: use_weights = 'use'
# Define a Task
task = tsk("sonar")
# Create train and test set
ids = partition(task)
# Train the learner on the training ids
learner$train(task, row_ids = ids$train)
print(learner$model)
#>
#> Call:
#> randomForest(formula = formula, data = data, classwt = classwt, cutoff = cutoff, importance = TRUE)
#> Type of random forest: classification
#> Number of trees: 500
#> No. of variables tried at each split: 7
#>
#> OOB estimate of error rate: 18.71%
#> Confusion matrix:
#> M R class.error
#> M 67 9 0.1184211
#> R 17 46 0.2698413
print(learner$importance())
#> V11 V12 V9 V21 V36
#> 2.093368e-02 2.033920e-02 1.499833e-02 1.261272e-02 9.718174e-03
#> V10 V20 V48 V49 V52
#> 9.227129e-03 7.955436e-03 7.621350e-03 7.375204e-03 7.274579e-03
#> V47 V28 V46 V44 V13
#> 7.110739e-03 7.022513e-03 5.746556e-03 5.298463e-03 5.041573e-03
#> V45 V4 V2 V1 V3
#> 4.651670e-03 4.195351e-03 3.928552e-03 3.473824e-03 3.248868e-03
#> V23 V17 V22 V29 V27
#> 3.135670e-03 3.047875e-03 3.029291e-03 2.864109e-03 2.862662e-03
#> V16 V18 V37 V51 V24
#> 2.548219e-03 2.512321e-03 2.410653e-03 2.156672e-03 2.144089e-03
#> V58 V35 V31 V53 V38
#> 2.006558e-03 1.998529e-03 1.989742e-03 1.895505e-03 1.759842e-03
#> V30 V5 V19 V55 V8
#> 1.747926e-03 1.677722e-03 1.649263e-03 1.644565e-03 1.613917e-03
#> V50 V43 V32 V59 V14
#> 1.495451e-03 1.342953e-03 1.325719e-03 1.297668e-03 1.281629e-03
#> V6 V15 V42 V39 V34
#> 1.277507e-03 1.167969e-03 1.070807e-03 1.063727e-03 1.058554e-03
#> V57 V40 V41 V56 V26
#> 1.031828e-03 9.698351e-04 9.426002e-04 8.946416e-04 8.072179e-04
#> V25 V54 V33 V7 V60
#> 6.588691e-04 3.628683e-04 5.727327e-05 2.959210e-05 -9.443831e-04
# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)
# Score the predictions
predictions$score()
#> classif.ce
#> 0.2173913