Skip to contents

Random forest for classification. Calls randomForest::randomForest() from randomForest.

Dictionary

This Learner can be instantiated via lrn():

lrn("classif.randomForest")

Meta Information

  • Task type: “classif”

  • Predict Types: “response”, “prob”

  • Feature Types: “logical”, “integer”, “numeric”, “factor”, “ordered”

  • Required Packages: mlr3, mlr3extralearners, randomForest

Parameters

IdTypeDefaultLevelsRange
ntreeinteger500\([1, \infty)\)
mtryinteger-\([1, \infty)\)
replacelogicalTRUETRUE, FALSE-
classwtuntypedNULL-
cutoffuntyped--
stratauntyped--
sampsizeuntyped--
nodesizeinteger1\([1, \infty)\)
maxnodesinteger-\([1, \infty)\)
importancecharacterFALSEaccuracy, gini, none-
localImplogicalFALSETRUE, FALSE-
proximitylogicalFALSETRUE, FALSE-
oob.proxlogical-TRUE, FALSE-
norm.voteslogicalTRUETRUE, FALSE-
do.tracelogicalFALSETRUE, FALSE-
keep.forestlogicalTRUETRUE, FALSE-
keep.inbaglogicalFALSETRUE, FALSE-
predict.alllogicalFALSETRUE, FALSE-
nodeslogicalFALSETRUE, FALSE-

References

Breiman, Leo (2001). “Random Forests.” Machine Learning, 45(1), 5–32. ISSN 1573-0565, doi:10.1023/A:1010933404324 .

See also

Author

pat-s

Super classes

mlr3::Learner -> mlr3::LearnerClassif -> LearnerClassifRandomForest

Methods

Inherited methods


Method new()

Creates a new instance of this R6 class.


Method importance()

The importance scores are extracted from the slot importance. Parameter 'importance' must be set to either "accuracy" or "gini".

Usage

LearnerClassifRandomForest$importance()

Returns

Named numeric().


Method oob_error()

OOB errors are extracted from the model slot err.rate.

Usage

LearnerClassifRandomForest$oob_error()

Returns

numeric(1).


Method clone()

The objects of this class are cloneable with this method.

Usage

LearnerClassifRandomForest$clone(deep = FALSE)

Arguments

deep

Whether to make a deep clone.

Examples

# Define the Learner
learner = lrn("classif.randomForest", importance = "accuracy")
print(learner)
#> 
#> ── <LearnerClassifRandomForest> (classif.randomForest): Random Forest ──────────
#> • Model: -
#> • Parameters: importance=accuracy
#> • Packages: mlr3, mlr3extralearners, and randomForest
#> • Predict Types: [response] and prob
#> • Feature Types: logical, integer, numeric, factor, and ordered
#> • Encapsulation: none (fallback: -)
#> • Properties: importance, multiclass, oob_error, twoclass, and weights
#> • Other settings: use_weights = 'use'

# Define a Task
task = tsk("sonar")
# Create train and test set
ids = partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)
#> 
#> Call:
#>  randomForest(formula = formula, data = data, classwt = classwt,      cutoff = cutoff, importance = TRUE) 
#>                Type of random forest: classification
#>                      Number of trees: 500
#> No. of variables tried at each split: 7
#> 
#>         OOB estimate of  error rate: 17.99%
#> Confusion matrix:
#>    M  R class.error
#> M 65  8   0.1095890
#> R 17 49   0.2575758
print(learner$importance())
#>           V11           V10            V9           V12           V36 
#>  3.087154e-02  2.177442e-02  1.756430e-02  1.646963e-02  1.442908e-02 
#>           V13           V52           V47           V48           V37 
#>  1.380753e-02  9.353004e-03  5.887479e-03  5.390828e-03  5.045437e-03 
#>           V21           V45            V3           V51           V27 
#>  4.303841e-03  4.223506e-03  4.104018e-03  4.103929e-03  3.621218e-03 
#>           V24           V20           V28            V4           V54 
#>  3.558595e-03  3.532400e-03  3.465018e-03  3.421179e-03  3.383128e-03 
#>           V46           V17           V29           V49            V5 
#>  3.259465e-03  3.150783e-03  2.783448e-03  2.770323e-03  2.500925e-03 
#>           V59           V22           V32           V18           V35 
#>  2.431304e-03  2.291084e-03  2.061683e-03  2.027130e-03  2.020046e-03 
#>           V16           V23           V38            V1            V8 
#>  1.994473e-03  1.964263e-03  1.717433e-03  1.716608e-03  1.708446e-03 
#>           V25           V15           V30           V53           V26 
#>  1.575099e-03  1.479429e-03  1.464152e-03  1.456090e-03  1.257613e-03 
#>           V34           V42           V40           V19           V33 
#>  1.081468e-03  1.068493e-03  1.010806e-03  9.858622e-04  9.222749e-04 
#>           V31           V44            V2           V58           V14 
#>  8.741324e-04  8.307984e-04  7.711061e-04  7.513344e-04  6.619787e-04 
#>            V6           V50           V57            V7           V43 
#>  6.306368e-04  4.497210e-04  4.425969e-04  4.052465e-04  2.963889e-04 
#>           V55           V60           V56           V39           V41 
#>  1.570490e-04  3.932018e-05 -7.473877e-05 -4.217541e-04 -6.110070e-04 

# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()
#> classif.ce 
#>   0.173913