Classification Random Forest Learner
Source:R/learner_randomForest_classif_randomForest.R
mlr_learners_classif.randomForest.RdRandom forest for classification.
Calls randomForest::randomForest() from randomForest.
Meta Information
Task type: “classif”
Predict Types: “response”, “prob”
Feature Types: “logical”, “integer”, “numeric”, “factor”, “ordered”
Required Packages: mlr3, mlr3extralearners, randomForest
Parameters
| Id | Type | Default | Levels | Range |
| ntree | integer | 500 | \([1, \infty)\) | |
| mtry | integer | - | \([1, \infty)\) | |
| replace | logical | TRUE | TRUE, FALSE | - |
| classwt | untyped | NULL | - | |
| cutoff | untyped | - | - | |
| strata | untyped | - | - | |
| sampsize | untyped | - | - | |
| nodesize | integer | 1 | \([1, \infty)\) | |
| maxnodes | integer | - | \([1, \infty)\) | |
| importance | character | FALSE | accuracy, gini, none | - |
| localImp | logical | FALSE | TRUE, FALSE | - |
| proximity | logical | FALSE | TRUE, FALSE | - |
| oob.prox | logical | - | TRUE, FALSE | - |
| norm.votes | logical | TRUE | TRUE, FALSE | - |
| do.trace | logical | FALSE | TRUE, FALSE | - |
| keep.forest | logical | TRUE | TRUE, FALSE | - |
| keep.inbag | logical | FALSE | TRUE, FALSE | - |
| predict.all | logical | FALSE | TRUE, FALSE | - |
| nodes | logical | FALSE | TRUE, FALSE | - |
References
Breiman, Leo (2001). “Random Forests.” Machine Learning, 45(1), 5–32. ISSN 1573-0565, doi:10.1023/A:1010933404324 .
See also
as.data.table(mlr_learners)for a table of available Learners in the running session (depending on the loaded packages).Chapter in the mlr3book: https://mlr3book.mlr-org.com/basics.html#learners
mlr3learners for a selection of recommended learners.
mlr3cluster for unsupervised clustering learners.
mlr3pipelines to combine learners with pre- and postprocessing steps.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
Super classes
mlr3::Learner -> mlr3::LearnerClassif -> LearnerClassifRandomForest
Methods
Inherited methods
mlr3::Learner$base_learner()mlr3::Learner$configure()mlr3::Learner$encapsulate()mlr3::Learner$format()mlr3::Learner$help()mlr3::Learner$predict()mlr3::Learner$predict_newdata()mlr3::Learner$print()mlr3::Learner$reset()mlr3::Learner$selected_features()mlr3::Learner$train()mlr3::LearnerClassif$predict_newdata_fast()
Method importance()
The importance scores are extracted from the slot importance.
Parameter 'importance' must be set to either "accuracy" or "gini".
Returns
Named numeric().
Examples
# Define the Learner
learner = lrn("classif.randomForest", importance = "accuracy")
print(learner)
#>
#> ── <LearnerClassifRandomForest> (classif.randomForest): Random Forest ──────────
#> • Model: -
#> • Parameters: importance=accuracy
#> • Packages: mlr3, mlr3extralearners, and randomForest
#> • Predict Types: [response] and prob
#> • Feature Types: logical, integer, numeric, factor, and ordered
#> • Encapsulation: none (fallback: -)
#> • Properties: importance, multiclass, oob_error, twoclass, and weights
#> • Other settings: use_weights = 'use'
# Define a Task
task = tsk("sonar")
# Create train and test set
ids = partition(task)
# Train the learner on the training ids
learner$train(task, row_ids = ids$train)
print(learner$model)
#>
#> Call:
#> randomForest(formula = formula, data = data, classwt = classwt, cutoff = cutoff, importance = TRUE)
#> Type of random forest: classification
#> Number of trees: 500
#> No. of variables tried at each split: 7
#>
#> OOB estimate of error rate: 18.71%
#> Confusion matrix:
#> M R class.error
#> M 56 13 0.1884058
#> R 13 57 0.1857143
print(learner$importance())
#> V11 V12 V10 V9 V49
#> 2.559094e-02 2.131107e-02 1.606560e-02 1.440383e-02 1.212882e-02
#> V13 V48 V52 V51 V45
#> 8.655057e-03 8.594503e-03 8.407855e-03 7.527816e-03 6.547448e-03
#> V36 V20 V46 V21 V37
#> 5.508584e-03 5.502481e-03 5.157540e-03 4.490383e-03 4.133542e-03
#> V47 V22 V6 V4 V23
#> 3.716640e-03 3.456317e-03 3.203685e-03 2.992848e-03 2.794890e-03
#> V28 V27 V43 V18 V15
#> 2.791465e-03 2.576229e-03 2.540254e-03 2.362809e-03 2.308253e-03
#> V16 V17 V19 V35 V26
#> 2.297891e-03 1.989970e-03 1.938577e-03 1.829462e-03 1.827633e-03
#> V1 V3 V38 V31 V44
#> 1.764609e-03 1.696081e-03 1.571542e-03 1.562891e-03 1.528490e-03
#> V34 V8 V54 V30 V2
#> 1.436465e-03 1.399400e-03 1.398761e-03 1.363518e-03 1.312111e-03
#> V32 V29 V14 V5 V24
#> 1.311949e-03 1.291702e-03 1.289361e-03 1.186339e-03 1.139316e-03
#> V25 V50 V7 V55 V59
#> 1.130667e-03 9.852040e-04 8.657495e-04 7.864187e-04 6.333703e-04
#> V39 V42 V53 V41 V58
#> 6.162422e-04 5.178006e-04 4.764501e-04 3.929366e-04 2.318095e-04
#> V56 V57 V33 V60 V40
#> 6.427741e-05 -3.398071e-04 -3.995102e-04 -9.207035e-04 -9.385282e-04
# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)
# Score the predictions
predictions$score()
#> classif.ce
#> 0.1884058