Skip to contents

Random forest for classification. Calls randomForest::randomForest() from randomForest.

Dictionary

This Learner can be instantiated via lrn():

lrn("classif.randomForest")

Meta Information

  • Task type: “classif”

  • Predict Types: “response”, “prob”

  • Feature Types: “logical”, “integer”, “numeric”, “factor”, “ordered”

  • Required Packages: mlr3, mlr3extralearners, randomForest

Parameters

IdTypeDefaultLevelsRange
ntreeinteger500\([1, \infty)\)
mtryinteger-\([1, \infty)\)
replacelogicalTRUETRUE, FALSE-
classwtuntypedNULL-
cutoffuntyped--
stratauntyped--
sampsizeuntyped--
nodesizeinteger1\([1, \infty)\)
maxnodesinteger-\([1, \infty)\)
importancecharacterFALSEaccuracy, gini, none-
localImplogicalFALSETRUE, FALSE-
proximitylogicalFALSETRUE, FALSE-
oob.proxlogical-TRUE, FALSE-
norm.voteslogicalTRUETRUE, FALSE-
do.tracelogicalFALSETRUE, FALSE-
keep.forestlogicalTRUETRUE, FALSE-
keep.inbaglogicalFALSETRUE, FALSE-
predict.alllogicalFALSETRUE, FALSE-
nodeslogicalFALSETRUE, FALSE-

References

Breiman, Leo (2001). “Random Forests.” Machine Learning, 45(1), 5–32. ISSN 1573-0565, doi:10.1023/A:1010933404324 .

See also

Author

pat-s

Super classes

mlr3::Learner -> mlr3::LearnerClassif -> LearnerClassifRandomForest

Methods

Inherited methods


Method new()

Creates a new instance of this R6 class.


Method importance()

The importance scores are extracted from the slot importance. Parameter 'importance' must be set to either "accuracy" or "gini".

Usage

LearnerClassifRandomForest$importance()

Returns

Named numeric().


Method oob_error()

OOB errors are extracted from the model slot err.rate.

Usage

LearnerClassifRandomForest$oob_error()

Returns

numeric(1).


Method clone()

The objects of this class are cloneable with this method.

Usage

LearnerClassifRandomForest$clone(deep = FALSE)

Arguments

deep

Whether to make a deep clone.

Examples

# Define the Learner
learner = lrn("classif.randomForest", importance = "accuracy")
print(learner)
#> 
#> ── <LearnerClassifRandomForest> (classif.randomForest): Random Forest ──────────
#> • Model: -
#> • Parameters: importance=accuracy
#> • Packages: mlr3, mlr3extralearners, and randomForest
#> • Predict Types: [response] and prob
#> • Feature Types: logical, integer, numeric, factor, and ordered
#> • Encapsulation: none (fallback: -)
#> • Properties: importance, multiclass, oob_error, twoclass, and weights
#> • Other settings: use_weights = 'use'

# Define a Task
task = tsk("sonar")
# Create train and test set
ids = partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)
#> 
#> Call:
#>  randomForest(formula = formula, data = data, classwt = classwt,      cutoff = cutoff, importance = TRUE) 
#>                Type of random forest: classification
#>                      Number of trees: 500
#> No. of variables tried at each split: 7
#> 
#>         OOB estimate of  error rate: 18.71%
#> Confusion matrix:
#>    M  R class.error
#> M 56 13   0.1884058
#> R 13 57   0.1857143
print(learner$importance())
#>           V11           V12           V10            V9           V49 
#>  2.559094e-02  2.131107e-02  1.606560e-02  1.440383e-02  1.212882e-02 
#>           V13           V48           V52           V51           V45 
#>  8.655057e-03  8.594503e-03  8.407855e-03  7.527816e-03  6.547448e-03 
#>           V36           V20           V46           V21           V37 
#>  5.508584e-03  5.502481e-03  5.157540e-03  4.490383e-03  4.133542e-03 
#>           V47           V22            V6            V4           V23 
#>  3.716640e-03  3.456317e-03  3.203685e-03  2.992848e-03  2.794890e-03 
#>           V28           V27           V43           V18           V15 
#>  2.791465e-03  2.576229e-03  2.540254e-03  2.362809e-03  2.308253e-03 
#>           V16           V17           V19           V35           V26 
#>  2.297891e-03  1.989970e-03  1.938577e-03  1.829462e-03  1.827633e-03 
#>            V1            V3           V38           V31           V44 
#>  1.764609e-03  1.696081e-03  1.571542e-03  1.562891e-03  1.528490e-03 
#>           V34            V8           V54           V30            V2 
#>  1.436465e-03  1.399400e-03  1.398761e-03  1.363518e-03  1.312111e-03 
#>           V32           V29           V14            V5           V24 
#>  1.311949e-03  1.291702e-03  1.289361e-03  1.186339e-03  1.139316e-03 
#>           V25           V50            V7           V55           V59 
#>  1.130667e-03  9.852040e-04  8.657495e-04  7.864187e-04  6.333703e-04 
#>           V39           V42           V53           V41           V58 
#>  6.162422e-04  5.178006e-04  4.764501e-04  3.929366e-04  2.318095e-04 
#>           V56           V57           V33           V60           V40 
#>  6.427741e-05 -3.398071e-04 -3.995102e-04 -9.207035e-04 -9.385282e-04 

# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()
#> classif.ce 
#>  0.1884058