Classification Random Forest Learner
mlr_learners_classif.randomForest.Rd
Random forest for classification.
Calls randomForest::randomForest()
from randomForest.
Meta Information
Task type: “classif”
Predict Types: “response”, “prob”
Feature Types: “logical”, “integer”, “numeric”, “factor”, “ordered”
Required Packages: mlr3, mlr3extralearners, randomForest
Parameters
Id | Type | Default | Levels | Range |
ntree | integer | 500 | \([1, \infty)\) | |
mtry | integer | - | \([1, \infty)\) | |
replace | logical | TRUE | TRUE, FALSE | - |
classwt | untyped | NULL | - | |
cutoff | untyped | - | - | |
strata | untyped | - | - | |
sampsize | untyped | - | - | |
nodesize | integer | 1 | \([1, \infty)\) | |
maxnodes | integer | - | \([1, \infty)\) | |
importance | character | FALSE | accuracy, gini, none | - |
localImp | logical | FALSE | TRUE, FALSE | - |
proximity | logical | FALSE | TRUE, FALSE | - |
oob.prox | logical | - | TRUE, FALSE | - |
norm.votes | logical | TRUE | TRUE, FALSE | - |
do.trace | logical | FALSE | TRUE, FALSE | - |
keep.forest | logical | TRUE | TRUE, FALSE | - |
keep.inbag | logical | FALSE | TRUE, FALSE | - |
predict.all | logical | FALSE | TRUE, FALSE | - |
nodes | logical | FALSE | TRUE, FALSE | - |
References
Breiman, Leo (2001). “Random Forests.” Machine Learning, 45(1), 5–32. ISSN 1573-0565, doi:10.1023/A:1010933404324 .
See also
as.data.table(mlr_learners)
for a table of available Learners in the running session (depending on the loaded packages).Chapter in the mlr3book: https://mlr3book.mlr-org.com/basics.html#learners
mlr3learners for a selection of recommended learners.
mlr3cluster for unsupervised clustering learners.
mlr3pipelines to combine learners with pre- and postprocessing steps.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
Super classes
mlr3::Learner
-> mlr3::LearnerClassif
-> LearnerClassifRandomForest
Methods
Method importance()
The importance scores are extracted from the slot importance
.
Parameter 'importance' must be set to either "accuracy"
or "gini"
.
Returns
Named numeric()
.
Examples
# Define the Learner
learner = mlr3::lrn("classif.randomForest", importance = "accuracy")
print(learner)
#> <LearnerClassifRandomForest:classif.randomForest>: Random Forest
#> * Model: -
#> * Parameters: importance=accuracy
#> * Packages: mlr3, mlr3extralearners, randomForest
#> * Predict Types: [response], prob
#> * Feature Types: logical, integer, numeric, factor, ordered
#> * Properties: importance, multiclass, oob_error, twoclass, weights
# Define a Task
task = mlr3::tsk("sonar")
# Create train and test set
ids = mlr3::partition(task)
# Train the learner on the training ids
learner$train(task, row_ids = ids$train)
print(learner$model)
#>
#> Call:
#> randomForest(formula = formula, data = data, classwt = classwt, cutoff = cutoff, importance = TRUE)
#> Type of random forest: classification
#> Number of trees: 500
#> No. of variables tried at each split: 7
#>
#> OOB estimate of error rate: 20.86%
#> Confusion matrix:
#> M R class.error
#> M 64 8 0.1111111
#> R 21 46 0.3134328
print(learner$importance())
#> V11 V9 V49 V12 V10
#> 3.006151e-02 1.904614e-02 1.372383e-02 1.339351e-02 1.320822e-02
#> V48 V47 V21 V45 V52
#> 9.842676e-03 8.126560e-03 7.619489e-03 6.878568e-03 6.710456e-03
#> V4 V20 V36 V46 V17
#> 6.571320e-03 6.430260e-03 6.226161e-03 4.794111e-03 4.671071e-03
#> V23 V28 V18 V39 V35
#> 4.510343e-03 3.937851e-03 3.534600e-03 3.348480e-03 3.011992e-03
#> V27 V19 V37 V44 V16
#> 2.968183e-03 2.944083e-03 2.849459e-03 2.724859e-03 2.713333e-03
#> V22 V51 V31 V1 V26
#> 2.669834e-03 2.522467e-03 2.266004e-03 2.073883e-03 1.828775e-03
#> V5 V30 V43 V25 V2
#> 1.703760e-03 1.432214e-03 1.370920e-03 1.332823e-03 9.390031e-04
#> V24 V32 V8 V38 V15
#> 8.498513e-04 8.144633e-04 7.364079e-04 7.315953e-04 7.294239e-04
#> V41 V55 V53 V34 V7
#> 6.618511e-04 6.259566e-04 5.568435e-04 5.532269e-04 4.957157e-04
#> V29 V57 V42 V59 V13
#> 4.028236e-04 3.969816e-04 3.830966e-04 3.775797e-04 3.653505e-04
#> V60 V14 V6 V40 V33
#> 3.639320e-04 2.791276e-04 2.034076e-04 1.471439e-04 1.459719e-04
#> V3 V58 V54 V50 V56
#> 4.574223e-05 -4.375508e-04 -5.058738e-04 -6.340515e-04 -9.588299e-04
# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)
# Score the predictions
predictions$score()
#> classif.ce
#> 0.1884058