Skip to contents

Tree that considers K randomly chosen attributes at each node. Calls RWeka::make_Weka_classifier() from RWeka.

Custom mlr3 parameters

  • output_debug_info:

    • original id: output-debug-info

  • do_not_check_capabilities:

    • original id: do-not-check-capabilities

  • num_decimal_places:

    • original id: num-decimal-places

  • batch_size:

    • original id: batch-size

  • Reason for change: This learner contains changed ids of the following control arguments since their ids contain irregular pattern

Dictionary

This Learner can be instantiated via lrn():

lrn("classif.random_tree")

Meta Information

  • Task type: “classif”

  • Predict Types: “response”, “prob”

  • Feature Types: “logical”, “integer”, “numeric”, “factor”, “ordered”

  • Required Packages: mlr3, RWeka

Parameters

IdTypeDefaultLevelsRange
subsetuntyped--
na.actionuntyped--
Kinteger0\([0, \infty)\)
Minteger1\([1, \infty)\)
Vnumeric0.001\((-\infty, \infty)\)
Sinteger1\((-\infty, \infty)\)
depthinteger0\([0, \infty)\)
Ninteger0\([0, \infty)\)
UlogicalFALSETRUE, FALSE-
BlogicalFALSETRUE, FALSE-
output_debug_infologicalFALSETRUE, FALSE-
do_not_check_capabilitieslogicalFALSETRUE, FALSE-
num_decimal_placesinteger2\([1, \infty)\)
batch_sizeinteger100\([1, \infty)\)
optionsuntypedNULL-

See also

Author

damirpolat

Super classes

mlr3::Learner -> mlr3::LearnerClassif -> LearnerClassifRandomTree

Methods

Inherited methods


Method new()

Creates a new instance of this R6 class.


Method clone()

The objects of this class are cloneable with this method.

Usage

LearnerClassifRandomTree$clone(deep = FALSE)

Arguments

deep

Whether to make a deep clone.

Examples

# Define the Learner
learner = mlr3::lrn("classif.random_tree")
print(learner)
#> 
#> ── <LearnerClassifRandomTree> (classif.random_tree): Random Tree ───────────────
#> • Model: -
#> • Parameters: list()
#> • Packages: mlr3 and RWeka
#> • Predict Types: [response] and prob
#> • Feature Types: logical, integer, numeric, factor, and ordered
#> • Encapsulation: none (fallback: -)
#> • Properties: missings, multiclass, and twoclass
#> • Other settings: use_weights = 'error'

# Define a Task
task = mlr3::tsk("sonar")

# Create train and test set
ids = mlr3::partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)
#> 
#> RandomTree
#> ==========
#> 
#> V21 < 0.63
#> |   V52 < 0.01
#> |   |   V25 < 0.96 : R (21/0)
#> |   |   V25 >= 0.96 : M (1/0)
#> |   V52 >= 0.01
#> |   |   V12 < 0.22
#> |   |   |   V48 < 0.12 : R (17/0)
#> |   |   |   V48 >= 0.12
#> |   |   |   |   V44 < 0.25 : R (4/0)
#> |   |   |   |   V44 >= 0.25
#> |   |   |   |   |   V8 < 0.16 : M (5/0)
#> |   |   |   |   |   V8 >= 0.16 : R (1/0)
#> |   |   V12 >= 0.22
#> |   |   |   V17 < 0.51
#> |   |   |   |   V15 < 0.37
#> |   |   |   |   |   V27 < 0.5
#> |   |   |   |   |   |   V17 < 0.29 : R (1/0)
#> |   |   |   |   |   |   V17 >= 0.29 : M (1/0)
#> |   |   |   |   |   V27 >= 0.5 : M (18/0)
#> |   |   |   |   V15 >= 0.37 : R (2/0)
#> |   |   |   V17 >= 0.51
#> |   |   |   |   V54 < 0.01 : R (3/0)
#> |   |   |   |   V54 >= 0.01 : M (1/0)
#> V21 >= 0.63
#> |   V28 < 0.91
#> |   |   V9 < 0.16
#> |   |   |   V4 < 0.06
#> |   |   |   |   V22 < 0.8
#> |   |   |   |   |   V10 < 0.11 : R (1/0)
#> |   |   |   |   |   V10 >= 0.11
#> |   |   |   |   |   |   V10 < 0.21 : M (2/0)
#> |   |   |   |   |   |   V10 >= 0.21 : R (1/0)
#> |   |   |   |   V22 >= 0.8 : R (7/0)
#> |   |   |   V4 >= 0.06
#> |   |   |   |   V34 < 0.6
#> |   |   |   |   |   V38 < 0.18 : R (1/0)
#> |   |   |   |   |   V38 >= 0.18 : M (8/0)
#> |   |   |   |   V34 >= 0.6 : R (1/0)
#> |   |   V9 >= 0.16
#> |   |   |   V5 < 0.16
#> |   |   |   |   V52 < 0 : R (1/0)
#> |   |   |   |   V52 >= 0
#> |   |   |   |   |   V50 < 0.01
#> |   |   |   |   |   |   V22 < 0.34 : R (1/0)
#> |   |   |   |   |   |   V22 >= 0.34 : M (3/0)
#> |   |   |   |   |   V50 >= 0.01 : M (21/0)
#> |   |   |   V5 >= 0.16
#> |   |   |   |   V13 < 0.58 : R (3/0)
#> |   |   |   |   V13 >= 0.58 : M (1/0)
#> |   V28 >= 0.91 : M (13/0)
#> 
#> Size of the tree : 51


# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()
#> classif.ce 
#>  0.2463768