Skip to contents

Tree that considers K randomly chosen attributes at each node. Calls RWeka::make_Weka_classifier() from RWeka.

Custom mlr3 parameters

  • output_debug_info:

    • original id: output-debug-info

  • do_not_check_capabilities:

    • original id: do-not-check-capabilities

  • num_decimal_places:

    • original id: num-decimal-places

  • batch_size:

    • original id: batch-size

  • Reason for change: This learner contains changed ids of the following control arguments since their ids contain irregular pattern

Dictionary

This Learner can be instantiated via lrn():

lrn("classif.random_tree")

Meta Information

  • Task type: “classif”

  • Predict Types: “response”, “prob”

  • Feature Types: “logical”, “integer”, “numeric”, “factor”, “ordered”

  • Required Packages: mlr3, RWeka

Parameters

IdTypeDefaultLevelsRange
subsetuntyped--
na.actionuntyped--
Kinteger0\([0, \infty)\)
Minteger1\([1, \infty)\)
Vnumeric0.001\((-\infty, \infty)\)
Sinteger1\((-\infty, \infty)\)
depthinteger0\([0, \infty)\)
Ninteger0\([0, \infty)\)
UlogicalFALSETRUE, FALSE-
BlogicalFALSETRUE, FALSE-
output_debug_infologicalFALSETRUE, FALSE-
do_not_check_capabilitieslogicalFALSETRUE, FALSE-
num_decimal_placesinteger2\([1, \infty)\)
batch_sizeinteger100\([1, \infty)\)
optionsuntypedNULL-

See also

Author

damirpolat

Super classes

mlr3::Learner -> mlr3::LearnerClassif -> LearnerClassifRandomTree

Methods

Inherited methods


Method new()

Creates a new instance of this R6 class.


Method clone()

The objects of this class are cloneable with this method.

Usage

LearnerClassifRandomTree$clone(deep = FALSE)

Arguments

deep

Whether to make a deep clone.

Examples

# Define the Learner
learner = mlr3::lrn("classif.random_tree")
print(learner)
#> <LearnerClassifRandomTree:classif.random_tree>: Random Tree
#> * Model: -
#> * Parameters: list()
#> * Packages: mlr3, RWeka
#> * Predict Types:  [response], prob
#> * Feature Types: logical, integer, numeric, factor, ordered
#> * Properties: missings, multiclass, twoclass

# Define a Task
task = mlr3::tsk("sonar")

# Create train and test set
ids = mlr3::partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)
#> 
#> RandomTree
#> ==========
#> 
#> V43 < 0.31
#> |   V4 < 0.05
#> |   |   V48 < 0.07
#> |   |   |   V59 < 0.01 : R (23/0)
#> |   |   |   V59 >= 0.01
#> |   |   |   |   V24 < 0.88 : R (10/0)
#> |   |   |   |   V24 >= 0.88
#> |   |   |   |   |   V29 < 0.95 : M (3/0)
#> |   |   |   |   |   V29 >= 0.95 : R (1/0)
#> |   |   V48 >= 0.07
#> |   |   |   V42 < 0.17 : M (7/0)
#> |   |   |   V42 >= 0.17
#> |   |   |   |   V10 < 0.15 : R (8/0)
#> |   |   |   |   V10 >= 0.15
#> |   |   |   |   |   V35 < 0.18 : R (2/0)
#> |   |   |   |   |   V35 >= 0.18
#> |   |   |   |   |   |   V48 < 0.1 : M (4/0)
#> |   |   |   |   |   |   V48 >= 0.1
#> |   |   |   |   |   |   |   V3 < 0.03 : M (3/0)
#> |   |   |   |   |   |   |   V3 >= 0.03 : R (3/0)
#> |   V4 >= 0.05
#> |   |   V10 < 0.16
#> |   |   |   V37 < 0.45
#> |   |   |   |   V13 < 0.23 : R (2/0)
#> |   |   |   |   V13 >= 0.23 : M (3/0)
#> |   |   |   V37 >= 0.45 : R (5/0)
#> |   |   V10 >= 0.16
#> |   |   |   V10 < 0.28 : M (17/0)
#> |   |   |   V10 >= 0.28
#> |   |   |   |   V6 < 0.13 : M (5/0)
#> |   |   |   |   V6 >= 0.13
#> |   |   |   |   |   V14 < 0.77 : R (4/0)
#> |   |   |   |   |   V14 >= 0.77 : M (1/0)
#> V43 >= 0.31
#> |   V22 < 0.12 : R (4/0)
#> |   V22 >= 0.12
#> |   |   V49 < 0.06
#> |   |   |   V34 < 0.51 : M (7/0)
#> |   |   |   V34 >= 0.51
#> |   |   |   |   V46 < 0.25 : R (5/0)
#> |   |   |   |   V46 >= 0.25
#> |   |   |   |   |   V11 < 0.24 : R (1/0)
#> |   |   |   |   |   V11 >= 0.24 : M (2/0)
#> |   |   V49 >= 0.06 : M (19/0)
#> 
#> Size of the tree : 45


# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()
#> classif.ce 
#>  0.3768116