Classification Random Tree Learner
mlr_learners_classif.random_tree.Rd
Tree that considers K randomly chosen attributes at each node.
Calls RWeka::make_Weka_classifier()
from RWeka.
Custom mlr3 parameters
output_debug_info
:original id: output-debug-info
do_not_check_capabilities
:original id: do-not-check-capabilities
num_decimal_places
:original id: num-decimal-places
batch_size
:original id: batch-size
Reason for change: This learner contains changed ids of the following control arguments since their ids contain irregular pattern
Parameters
Id | Type | Default | Levels | Range |
subset | untyped | - | - | |
na.action | untyped | - | - | |
K | integer | 0 | \([0, \infty)\) | |
M | integer | 1 | \([1, \infty)\) | |
V | numeric | 0.001 | \((-\infty, \infty)\) | |
S | integer | 1 | \((-\infty, \infty)\) | |
depth | integer | 0 | \([0, \infty)\) | |
N | integer | 0 | \([0, \infty)\) | |
U | logical | FALSE | TRUE, FALSE | - |
B | logical | FALSE | TRUE, FALSE | - |
output_debug_info | logical | FALSE | TRUE, FALSE | - |
do_not_check_capabilities | logical | FALSE | TRUE, FALSE | - |
num_decimal_places | integer | 2 | \([1, \infty)\) | |
batch_size | integer | 100 | \([1, \infty)\) | |
options | untyped | NULL | - |
See also
as.data.table(mlr_learners)
for a table of available Learners in the running session (depending on the loaded packages).Chapter in the mlr3book: https://mlr3book.mlr-org.com/basics.html#learners
mlr3learners for a selection of recommended learners.
mlr3cluster for unsupervised clustering learners.
mlr3pipelines to combine learners with pre- and postprocessing steps.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
Super classes
mlr3::Learner
-> mlr3::LearnerClassif
-> LearnerClassifRandomTree
Examples
# Define the Learner
learner = mlr3::lrn("classif.random_tree")
print(learner)
#>
#> ── <LearnerClassifRandomTree> (classif.random_tree): Random Tree ───────────────
#> • Model: -
#> • Parameters: list()
#> • Packages: mlr3 and RWeka
#> • Predict Types: [response] and prob
#> • Feature Types: logical, integer, numeric, factor, and ordered
#> • Encapsulation: none (fallback: -)
#> • Properties: missings, multiclass, and twoclass
#> • Other settings: use_weights = 'error'
# Define a Task
task = mlr3::tsk("sonar")
# Create train and test set
ids = mlr3::partition(task)
# Train the learner on the training ids
learner$train(task, row_ids = ids$train)
print(learner$model)
#>
#> RandomTree
#> ==========
#>
#> V21 < 0.63
#> | V52 < 0.01
#> | | V25 < 0.96 : R (21/0)
#> | | V25 >= 0.96 : M (1/0)
#> | V52 >= 0.01
#> | | V12 < 0.22
#> | | | V48 < 0.12 : R (17/0)
#> | | | V48 >= 0.12
#> | | | | V44 < 0.25 : R (4/0)
#> | | | | V44 >= 0.25
#> | | | | | V8 < 0.16 : M (5/0)
#> | | | | | V8 >= 0.16 : R (1/0)
#> | | V12 >= 0.22
#> | | | V17 < 0.51
#> | | | | V15 < 0.37
#> | | | | | V27 < 0.5
#> | | | | | | V17 < 0.29 : R (1/0)
#> | | | | | | V17 >= 0.29 : M (1/0)
#> | | | | | V27 >= 0.5 : M (18/0)
#> | | | | V15 >= 0.37 : R (2/0)
#> | | | V17 >= 0.51
#> | | | | V54 < 0.01 : R (3/0)
#> | | | | V54 >= 0.01 : M (1/0)
#> V21 >= 0.63
#> | V28 < 0.91
#> | | V9 < 0.16
#> | | | V4 < 0.06
#> | | | | V22 < 0.8
#> | | | | | V10 < 0.11 : R (1/0)
#> | | | | | V10 >= 0.11
#> | | | | | | V10 < 0.21 : M (2/0)
#> | | | | | | V10 >= 0.21 : R (1/0)
#> | | | | V22 >= 0.8 : R (7/0)
#> | | | V4 >= 0.06
#> | | | | V34 < 0.6
#> | | | | | V38 < 0.18 : R (1/0)
#> | | | | | V38 >= 0.18 : M (8/0)
#> | | | | V34 >= 0.6 : R (1/0)
#> | | V9 >= 0.16
#> | | | V5 < 0.16
#> | | | | V52 < 0 : R (1/0)
#> | | | | V52 >= 0
#> | | | | | V50 < 0.01
#> | | | | | | V22 < 0.34 : R (1/0)
#> | | | | | | V22 >= 0.34 : M (3/0)
#> | | | | | V50 >= 0.01 : M (21/0)
#> | | | V5 >= 0.16
#> | | | | V13 < 0.58 : R (3/0)
#> | | | | V13 >= 0.58 : M (1/0)
#> | V28 >= 0.91 : M (13/0)
#>
#> Size of the tree : 51
# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)
# Score the predictions
predictions$score()
#> classif.ce
#> 0.2463768