Skip to contents

Fast decision tree learner. Calls RWeka::make_Weka_classifier() from RWeka.

Custom mlr3 parameters

  • output_debug_info:

    • original id: output-debug-info

  • do_not_check_capabilities:

    • original id: do-not-check-capabilities

  • num_decimal_places:

    • original id: num-decimal-places

  • batch_size:

    • original id: batch-size

  • Reason for change: This learner contains changed ids of the following control arguments since their ids contain irregular pattern

Dictionary

This Learner can be instantiated via lrn():

lrn("classif.reptree")

Meta Information

  • Task type: “classif”

  • Predict Types: “response”, “prob”

  • Feature Types: “logical”, “integer”, “numeric”, “factor”, “ordered”

  • Required Packages: mlr3, RWeka

Parameters

IdTypeDefaultLevelsRange
subsetuntyped--
na.actionuntyped--
Minteger2\((-\infty, \infty)\)
Vnumeric0.001\((-\infty, \infty)\)
Ninteger3\((-\infty, \infty)\)
Sinteger1\((-\infty, \infty)\)
Plogical-TRUE, FALSE-
Linteger-1\((-\infty, \infty)\)
Iinteger0\((-\infty, \infty)\)
RlogicalFALSETRUE, FALSE-
output_debug_infologicalFALSETRUE, FALSE-
do_not_check_capabilitieslogicalFALSETRUE, FALSE-
num_decimal_placesinteger2\([1, \infty)\)
batch_sizeinteger100\([1, \infty)\)
optionsuntypedNULL-

See also

Author

damirpolat

Super classes

mlr3::Learner -> mlr3::LearnerClassif -> LearnerClassifREPTree

Methods

Inherited methods


Method new()

Creates a new instance of this R6 class.

Usage


Method clone()

The objects of this class are cloneable with this method.

Usage

LearnerClassifREPTree$clone(deep = FALSE)

Arguments

deep

Whether to make a deep clone.

Examples

# Define the Learner
learner = mlr3::lrn("classif.reptree")
print(learner)
#> <LearnerClassifREPTree:classif.reptree>: Decision Tree Learner
#> * Model: -
#> * Parameters: list()
#> * Packages: mlr3, RWeka
#> * Predict Types:  [response], prob
#> * Feature Types: logical, integer, numeric, factor, ordered
#> * Properties: missings, multiclass, twoclass

# Define a Task
task = mlr3::tsk("sonar")

# Create train and test set
ids = mlr3::partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)
#> 
#> REPTree
#> ============
#> 
#> V11 < 0.17 : R (38/8) [17/3]
#> V11 >= 0.17
#> |   V27 < 0.82
#> |   |   V39 < 0.17 : R (7/0) [2/0]
#> |   |   V39 >= 0.17 : M (24/5) [10/2]
#> |   V27 >= 0.82 : M (23/0) [18/4]
#> 
#> Size of the tree : 7


# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()
#> classif.ce 
#>  0.2898551