Classification Random Forest SRC Learner
mlr_learners_classif.rfsrc.Rd
Random forest for classification.
Calls randomForestSRC::rfsrc()
from randomForestSRC.
Meta Information
Task type: “classif”
Predict Types: “response”, “prob”
Feature Types: “logical”, “integer”, “numeric”, “factor”
Required Packages: mlr3, mlr3extralearners, randomForestSRC
Parameters
Id | Type | Default | Levels | Range |
ntree | integer | 500 | \([1, \infty)\) | |
mtry | integer | - | \([1, \infty)\) | |
mtry.ratio | numeric | - | \([0, 1]\) | |
nodesize | integer | 15 | \([1, \infty)\) | |
nodedepth | integer | - | \([1, \infty)\) | |
splitrule | character | gini | gini, auc, entropy | - |
nsplit | integer | 10 | \([0, \infty)\) | |
importance | character | FALSE | FALSE, TRUE, none, permute, random, anti | - |
block.size | integer | 10 | \([1, \infty)\) | |
bootstrap | character | by.root | by.root, by.node, none, by.user | - |
samptype | character | swor | swor, swr | - |
samp | untyped | - | - | |
membership | logical | FALSE | TRUE, FALSE | - |
sampsize | untyped | - | - | |
sampsize.ratio | numeric | - | \([0, 1]\) | |
na.action | character | na.omit | na.omit, na.impute | - |
nimpute | integer | 1 | \([1, \infty)\) | |
ntime | integer | - | \([1, \infty)\) | |
cause | integer | - | \([1, \infty)\) | |
proximity | character | FALSE | FALSE, TRUE, inbag, oob, all | - |
distance | character | FALSE | FALSE, TRUE, inbag, oob, all | - |
forest.wt | character | FALSE | FALSE, TRUE, inbag, oob, all | - |
xvar.wt | untyped | - | - | |
split.wt | untyped | - | - | |
forest | logical | TRUE | TRUE, FALSE | - |
var.used | character | FALSE | FALSE, all.trees, by.tree | - |
split.depth | character | FALSE | FALSE, all.trees, by.tree | - |
seed | integer | - | \((-\infty, -1]\) | |
do.trace | logical | FALSE | TRUE, FALSE | - |
statistics | logical | FALSE | TRUE, FALSE | - |
get.tree | untyped | - | - | |
outcome | character | train | train, test | - |
ptn.count | integer | 0 | \([0, \infty)\) | |
cores | integer | 1 | \([1, \infty)\) | |
save.memory | logical | FALSE | TRUE, FALSE | - |
perf.type | character | - | gmean, misclass, brier, none | - |
case.depth | logical | FALSE | TRUE, FALSE | - |
Custom mlr3 parameters
mtry
: This hyperparameter can alternatively be set via the added hyperparametermtry.ratio
asmtry = max(ceiling(mtry.ratio * n_features), 1)
. Note thatmtry
andmtry.ratio
are mutually exclusive.sampsize
: This hyperparameter can alternatively be set via the added hyperparametersampsize.ratio
assampsize = max(ceiling(sampsize.ratio * n_obs), 1)
. Note thatsampsize
andsampsize.ratio
are mutually exclusive.cores
: This value is set as the optionrf.cores
during training and is set to 1 by default.
References
Breiman, Leo (2001). “Random Forests.” Machine Learning, 45(1), 5–32. ISSN 1573-0565, doi:10.1023/A:1010933404324 .
See also
as.data.table(mlr_learners)
for a table of available Learners in the running session (depending on the loaded packages).Chapter in the mlr3book: https://mlr3book.mlr-org.com/basics.html#learners
mlr3learners for a selection of recommended learners.
mlr3cluster for unsupervised clustering learners.
mlr3pipelines to combine learners with pre- and postprocessing steps.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
Super classes
mlr3::Learner
-> mlr3::LearnerClassif
-> LearnerClassifRandomForestSRC
Methods
Method importance()
The importance scores are extracted from the model slot importance
, returned for
'all'.
Returns
Named numeric()
.
Examples
# Define the Learner
learner = mlr3::lrn("classif.rfsrc", importance = "TRUE")
print(learner)
#> <LearnerClassifRandomForestSRC:classif.rfsrc>: Random Forest
#> * Model: -
#> * Parameters: importance=TRUE
#> * Packages: mlr3, mlr3extralearners, randomForestSRC
#> * Predict Types: [response], prob
#> * Feature Types: logical, integer, numeric, factor
#> * Properties: importance, missings, multiclass, oob_error, twoclass,
#> weights
# Define a Task
task = mlr3::tsk("sonar")
# Create train and test set
ids = mlr3::partition(task)
# Train the learner on the training ids
learner$train(task, row_ids = ids$train)
print(learner$model)
#> Sample size: 139
#> Frequency of class labels: 74, 65
#> Number of trees: 500
#> Forest terminal node size: 1
#> Average no. of terminal nodes: 17.212
#> No. of variables tried at each split: 8
#> Total no. of variables: 60
#> Resampling used to grow trees: swor
#> Resample size used to grow trees: 88
#> Analysis: RF-C
#> Family: class
#> Splitting rule: gini *random*
#> Number of random split points: 10
#> Imbalanced ratio: 1.1385
#> (OOB) Brier score: 0.14091733
#> (OOB) Normalized Brier score: 0.56366933
#> (OOB) AUC: 0.91985447
#> (OOB) Log-loss: 0.44342473
#> (OOB) PR-AUC: 0.90312259
#> (OOB) G-mean: 0.76133158
#> (OOB) Requested performance error: 0.21582734, 0.08108108, 0.36923077
#>
#> Confusion matrix:
#>
#> predicted
#> observed M R class.error
#> M 68 6 0.0811
#> R 24 41 0.3692
#>
#> (OOB) Misclassification rate: 0.2158273
print(learner$importance())
#> V11 V12 V9 V48 V10 V47
#> 0.087821490 0.073124812 0.035065348 0.033484181 0.033006553 0.027032556
#> V37 V51 V49 V17 V52 V45
#> 0.024815416 0.021839214 0.021650603 0.019221735 0.017280719 0.016415668
#> V13 V23 V27 V1 V36 V46
#> 0.016234473 0.015827521 0.015825205 0.014067767 0.013922931 0.013489941
#> V18 V15 V39 V34 V21 V16
#> 0.013210726 0.013070484 0.013062903 0.012338032 0.012196542 0.011921486
#> V6 V20 V28 V4 V44 V43
#> 0.011750000 0.010879251 0.010458316 0.010319721 0.009706263 0.009170008
#> V38 V32 V8 V29 V7 V35
#> 0.008996332 0.008710722 0.008289662 0.008138357 0.007711042 0.007422151
#> V14 V33 V53 V31 V2 V22
#> 0.007295226 0.007264608 0.007118653 0.006686950 0.006641612 0.006537992
#> V26 V30 V40 V58 V24 V19
#> 0.006507018 0.006239564 0.006106305 0.006106246 0.005785650 0.005667151
#> V50 V60 V5 V59 V54 V42
#> 0.005083212 0.004638877 0.004482435 0.003487982 0.003205286 0.003194814
#> V3 V56 V25 V55 V41 V57
#> 0.003026705 0.002760967 0.002733798 0.002732399 0.002154884 0.002040715
# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)
# Score the predictions
predictions$score()
#> classif.ce
#> 0.1594203