Classification Random Forest SRC Learner
Source:R/learner_randomForestSRC_classif_rfsrc.R
mlr_learners_classif.rfsrc.RdRandom forest for classification.
Calls randomForestSRC::rfsrc() from randomForestSRC.
Meta Information
Task type: “classif”
Predict Types: “response”, “prob”
Feature Types: “logical”, “integer”, “numeric”, “factor”
Required Packages: mlr3, mlr3extralearners, randomForestSRC
Parameters
| Id | Type | Default | Levels | Range |
| ntree | integer | 500 | \([1, \infty)\) | |
| mtry | integer | - | \([1, \infty)\) | |
| mtry.ratio | numeric | - | \([0, 1]\) | |
| nodesize | integer | 15 | \([1, \infty)\) | |
| nodedepth | integer | - | \([1, \infty)\) | |
| splitrule | character | gini | gini, auc, entropy | - |
| nsplit | integer | 10 | \([0, \infty)\) | |
| importance | character | FALSE | FALSE, TRUE, none, permute, random, anti | - |
| block.size | integer | 10 | \([1, \infty)\) | |
| bootstrap | character | by.root | by.root, by.node, none, by.user | - |
| samptype | character | swor | swor, swr | - |
| samp | untyped | - | - | |
| membership | logical | FALSE | TRUE, FALSE | - |
| sampsize | untyped | - | - | |
| sampsize.ratio | numeric | - | \([0, 1]\) | |
| na.action | character | na.omit | na.omit, na.impute | - |
| nimpute | integer | 1 | \([1, \infty)\) | |
| proximity | character | FALSE | FALSE, TRUE, inbag, oob, all | - |
| distance | character | FALSE | FALSE, TRUE, inbag, oob, all | - |
| forest.wt | character | FALSE | FALSE, TRUE, inbag, oob, all | - |
| xvar.wt | untyped | - | - | |
| split.wt | untyped | - | - | |
| forest | logical | TRUE | TRUE, FALSE | - |
| var.used | character | FALSE | FALSE, all.trees | - |
| split.depth | character | FALSE | FALSE, all.trees, by.tree | - |
| seed | integer | - | \((-\infty, -1]\) | |
| do.trace | logical | FALSE | TRUE, FALSE | - |
| get.tree | untyped | - | - | |
| outcome | character | train | train, test | - |
| ptn.count | integer | 0 | \([0, \infty)\) | |
| cores | integer | 1 | \([1, \infty)\) | |
| save.memory | logical | FALSE | TRUE, FALSE | - |
| perf.type | character | - | gmean, misclass, brier, none | - |
| case.depth | logical | FALSE | TRUE, FALSE | - |
| marginal.xvar | untyped | NULL | - |
Custom mlr3 parameters
mtry: This hyperparameter can alternatively be set via the added hyperparametermtry.ratioasmtry = max(ceiling(mtry.ratio * n_features), 1). Note thatmtryandmtry.ratioare mutually exclusive.sampsize: This hyperparameter can alternatively be set via the added hyperparametersampsize.ratioassampsize = max(ceiling(sampsize.ratio * n_obs), 1). Note thatsampsizeandsampsize.ratioare mutually exclusive.cores: This value is set as the optionrf.coresduring training and is set to 1 by default.
References
Breiman, Leo (2001). “Random Forests.” Machine Learning, 45(1), 5–32. ISSN 1573-0565, doi:10.1023/A:1010933404324 .
See also
as.data.table(mlr_learners)for a table of available Learners in the running session (depending on the loaded packages).Chapter in the mlr3book: https://mlr3book.mlr-org.com/basics.html#learners
mlr3learners for a selection of recommended learners.
mlr3cluster for unsupervised clustering learners.
mlr3pipelines to combine learners with pre- and postprocessing steps.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
Super classes
mlr3::Learner -> mlr3::LearnerClassif -> LearnerClassifRandomForestSRC
Methods
Inherited methods
Method importance()
The importance scores are extracted from the model slot importance, returned for
'all'.
Returns
Named numeric().
Method selected_features()
Selected features are extracted from the model slot var.used.
Note: Due to a known issue in randomForestSRC, enabling var.used = "all.trees"
causes prediction to fail. Therefore, this setting should be used exclusively
for feature selection purposes and not when prediction is required.
Examples
# Define the Learner
learner = lrn("classif.rfsrc", importance = "TRUE")
print(learner)
#>
#> ── <LearnerClassifRandomForestSRC> (classif.rfsrc): Random Forest ──────────────
#> • Model: -
#> • Parameters: importance=TRUE
#> • Packages: mlr3, mlr3extralearners, and randomForestSRC
#> • Predict Types: [response] and prob
#> • Feature Types: logical, integer, numeric, and factor
#> • Encapsulation: none (fallback: -)
#> • Properties: importance, missings, multiclass, oob_error, selected_features,
#> twoclass, and weights
#> • Other settings: use_weights = 'use'
# Define a Task
task = tsk("sonar")
# Create train and test set
ids = partition(task)
# Train the learner on the training ids
learner$train(task, row_ids = ids$train)
print(learner$model)
#> Sample size: 139
#> Frequency of class labels: M=73, R=66
#> Number of trees: 500
#> Forest terminal node size: 1
#> Average no. of terminal nodes: 17.516
#> No. of variables tried at each split: 8
#> Total no. of variables: 60
#> Resampling used to grow trees: swor
#> Resample size used to grow trees: 88
#> Analysis: RF-C
#> Family: class
#> Splitting rule: gini *random*
#> Number of random split points: 10
#> Imbalanced ratio: 1.1061
#> (OOB) Brier score: 0.14505277
#> (OOB) Normalized Brier score: 0.58021108
#> (OOB) AUC: 0.8952885
#> (OOB) Log-loss: 0.45349074
#> (OOB) PR-AUC: 0.89283698
#> (OOB) G-mean: 0.76708437
#> (OOB) Requested performance error: 0.22302158, 0.1369863, 0.31818182
#>
#> Confusion matrix:
#>
#> predicted
#> observed M R class.error
#> M 63 10 0.1370
#> R 21 45 0.3182
#>
#> (OOB) Misclassification rate: 0.2230216
#>
#> Random-classifier baselines (uniform):
#> Brier: 0.25 Normalized Brier: 1 Log-loss: 0.69314718
print(learner$importance())
#> V10 V11 V48 V36 V49
#> 0.0514859900 0.0424691584 0.0391156745 0.0368010120 0.0363183356
#> V12 V9 V16 V47 V28
#> 0.0281971573 0.0259101054 0.0244535651 0.0228463211 0.0224083216
#> V17 V27 V15 V51 V37
#> 0.0200733018 0.0169993769 0.0167580151 0.0162784738 0.0157010813
#> V39 V30 V18 V45 V1
#> 0.0151186007 0.0140838965 0.0131001347 0.0126587248 0.0125229311
#> V7 V6 V19 V5 V43
#> 0.0120548052 0.0117912791 0.0116366085 0.0111766847 0.0108835624
#> V13 V32 V46 V44 V21
#> 0.0107713393 0.0107706092 0.0102952330 0.0097620426 0.0093241341
#> V33 V52 V29 V35 V34
#> 0.0093095556 0.0089887736 0.0088715548 0.0081479861 0.0077238302
#> V14 V31 V20 V4 V26
#> 0.0075859691 0.0075638750 0.0071324392 0.0069915256 0.0068540647
#> V25 V58 V23 V38 V24
#> 0.0058257413 0.0056777041 0.0056690680 0.0056617383 0.0056585350
#> V3 V55 V40 V59 V53
#> 0.0050556404 0.0048047951 0.0047699265 0.0046568147 0.0045256702
#> V8 V22 V42 V2 V41
#> 0.0044780629 0.0037893348 0.0037744777 0.0031935257 0.0030401325
#> V57 V54 V50 V56 V60
#> 0.0026064714 0.0024670794 0.0012968775 0.0008875817 -0.0011561222
# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)
# Score the predictions
predictions$score()
#> classif.ce
#> 0.115942