Skip to contents

Random forest for classification. Calls randomForestSRC::rfsrc() from randomForestSRC.

Dictionary

This Learner can be instantiated via lrn():

lrn("classif.rfsrc")

Meta Information

  • Task type: “classif”

  • Predict Types: “response”, “prob”

  • Feature Types: “logical”, “integer”, “numeric”, “factor”

  • Required Packages: mlr3, mlr3extralearners, randomForestSRC

Parameters

IdTypeDefaultLevelsRange
ntreeinteger500\([1, \infty)\)
mtryinteger-\([1, \infty)\)
mtry.rationumeric-\([0, 1]\)
nodesizeinteger15\([1, \infty)\)
nodedepthinteger-\([1, \infty)\)
splitrulecharacterginigini, auc, entropy-
nsplitinteger10\([0, \infty)\)
importancecharacterFALSEFALSE, TRUE, none, permute, random, anti-
block.sizeinteger10\([1, \infty)\)
bootstrapcharacterby.rootby.root, by.node, none, by.user-
samptypecharactersworswor, swr-
sampuntyped--
membershiplogicalFALSETRUE, FALSE-
sampsizeuntyped--
sampsize.rationumeric-\([0, 1]\)
na.actioncharacterna.omitna.omit, na.impute-
nimputeinteger1\([1, \infty)\)
proximitycharacterFALSEFALSE, TRUE, inbag, oob, all-
distancecharacterFALSEFALSE, TRUE, inbag, oob, all-
forest.wtcharacterFALSEFALSE, TRUE, inbag, oob, all-
xvar.wtuntyped--
split.wtuntyped--
forestlogicalTRUETRUE, FALSE-
var.usedcharacterFALSEFALSE, all.trees-
split.depthcharacterFALSEFALSE, all.trees, by.tree-
seedinteger-\((-\infty, -1]\)
do.tracelogicalFALSETRUE, FALSE-
get.treeuntyped--
outcomecharactertraintrain, test-
ptn.countinteger0\([0, \infty)\)
coresinteger1\([1, \infty)\)
save.memorylogicalFALSETRUE, FALSE-
perf.typecharacter-gmean, misclass, brier, none-
case.depthlogicalFALSETRUE, FALSE-
marginal.xvaruntypedNULL-

Custom mlr3 parameters

  • mtry: This hyperparameter can alternatively be set via the added hyperparameter mtry.ratio as mtry = max(ceiling(mtry.ratio * n_features), 1). Note that mtry and mtry.ratio are mutually exclusive.

  • sampsize: This hyperparameter can alternatively be set via the added hyperparameter sampsize.ratio as sampsize = max(ceiling(sampsize.ratio * n_obs), 1). Note that sampsize and sampsize.ratio are mutually exclusive.

  • cores: This value is set as the option rf.cores during training and is set to 1 by default.

References

Breiman, Leo (2001). “Random Forests.” Machine Learning, 45(1), 5–32. ISSN 1573-0565, doi:10.1023/A:1010933404324 .

See also

Author

RaphaelS1

Super classes

mlr3::Learner -> mlr3::LearnerClassif -> LearnerClassifRandomForestSRC

Methods

Inherited methods


Method new()

Creates a new instance of this R6 class.


Method importance()

The importance scores are extracted from the model slot importance, returned for 'all'.

Usage

LearnerClassifRandomForestSRC$importance()

Returns

Named numeric().


Method selected_features()

Selected features are extracted from the model slot var.used.

Note: Due to a known issue in randomForestSRC, enabling var.used = "all.trees" causes prediction to fail. Therefore, this setting should be used exclusively for feature selection purposes and not when prediction is required.

Usage

LearnerClassifRandomForestSRC$selected_features()

Returns

character().


Method oob_error()

OOB error extracted from the model slot err.rate.

Usage

LearnerClassifRandomForestSRC$oob_error()

Returns

numeric().


Method clone()

The objects of this class are cloneable with this method.

Usage

LearnerClassifRandomForestSRC$clone(deep = FALSE)

Arguments

deep

Whether to make a deep clone.

Examples

# Define the Learner
learner = lrn("classif.rfsrc", importance = "TRUE")
print(learner)
#> 
#> ── <LearnerClassifRandomForestSRC> (classif.rfsrc): Random Forest ──────────────
#> • Model: -
#> • Parameters: importance=TRUE
#> • Packages: mlr3, mlr3extralearners, and randomForestSRC
#> • Predict Types: [response] and prob
#> • Feature Types: logical, integer, numeric, and factor
#> • Encapsulation: none (fallback: -)
#> • Properties: importance, missings, multiclass, oob_error, selected_features,
#> twoclass, and weights
#> • Other settings: use_weights = 'use'

# Define a Task
task = tsk("sonar")
# Create train and test set
ids = partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)
#>                          Sample size: 139
#>            Frequency of class labels: M=71, R=68
#>                      Number of trees: 500
#>            Forest terminal node size: 1
#>        Average no. of terminal nodes: 17.498
#> No. of variables tried at each split: 8
#>               Total no. of variables: 60
#>        Resampling used to grow trees: swor
#>     Resample size used to grow trees: 88
#>                             Analysis: RF-C
#>                               Family: class
#>                       Splitting rule: gini *random*
#>        Number of random split points: 10
#>                     Imbalanced ratio: 1.0441
#>                    (OOB) Brier score: 0.14650126
#>         (OOB) Normalized Brier score: 0.58600503
#>                            (OOB) AUC: 0.89198426
#>                       (OOB) Log-loss: 0.45665198
#>                         (OOB) PR-AUC: 0.90246221
#>                         (OOB) G-mean: 0.77689288
#>    (OOB) Requested performance error: 0.21582734, 0.12676056, 0.30882353
#> 
#> Confusion matrix:
#> 
#>           predicted
#>   observed  M  R class.error
#>          M 62  9      0.1268
#>          R 21 47      0.3088
#> 
#>       (OOB) Misclassification rate: 0.2158273
#> 
#> Random-classifier baselines (uniform):
#>    Brier: 0.25   Normalized Brier: 1   Log-loss: 0.69314718
print(learner$importance())
#>           V11           V48            V9           V49           V45 
#>  0.0479739232  0.0405273142  0.0312211091  0.0258476525  0.0237241985 
#>           V12           V52           V37           V10            V4 
#>  0.0228637637  0.0219607045  0.0205120810  0.0193074531  0.0188780031 
#>           V47           V36           V28           V17           V21 
#>  0.0183272490  0.0177656467  0.0167274290  0.0161254716  0.0146689498 
#>           V20           V16           V32           V46           V51 
#>  0.0145345498  0.0136651872  0.0136575995  0.0123179627  0.0122137190 
#>           V50            V5           V40           V15           V34 
#>  0.0112104789  0.0104700794  0.0104595282  0.0100236424  0.0096040166 
#>           V39           V30           V38           V41           V26 
#>  0.0091561330  0.0091551986  0.0091304787  0.0090282751  0.0085846392 
#>           V44           V13           V29           V18           V19 
#>  0.0084751340  0.0078623750  0.0075607640  0.0069735551  0.0063992436 
#>            V6           V27           V35           V22            V1 
#>  0.0060828164  0.0059632489  0.0059423655  0.0056766601  0.0055488468 
#>            V7           V54           V14           V33           V56 
#>  0.0052165499  0.0051011049  0.0049773688  0.0040706820  0.0040389420 
#>           V31           V42           V43            V8            V3 
#>  0.0039244161  0.0033270149  0.0029232523  0.0027387319  0.0026224651 
#>           V23           V58           V25            V2           V24 
#>  0.0026088793  0.0022026793  0.0020046201  0.0017287510  0.0016296286 
#>           V55           V59           V53           V57           V60 
#>  0.0013021218 -0.0002942269 -0.0010209343 -0.0010271587 -0.0029081486 

# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()
#> classif.ce 
#>  0.1594203