Classification Random Forest SRC Learner
Source:R/learner_randomForestSRC_classif_rfsrc.R
mlr_learners_classif.rfsrc.RdRandom forest for classification.
Calls randomForestSRC::rfsrc() from randomForestSRC.
Meta Information
Task type: “classif”
Predict Types: “response”, “prob”
Feature Types: “logical”, “integer”, “numeric”, “factor”
Required Packages: mlr3, mlr3extralearners, randomForestSRC
Parameters
| Id | Type | Default | Levels | Range |
| ntree | integer | 500 | \([1, \infty)\) | |
| mtry | integer | - | \([1, \infty)\) | |
| mtry.ratio | numeric | - | \([0, 1]\) | |
| nodesize | integer | 15 | \([1, \infty)\) | |
| nodedepth | integer | - | \([1, \infty)\) | |
| splitrule | character | gini | gini, auc, entropy | - |
| nsplit | integer | 10 | \([0, \infty)\) | |
| importance | character | FALSE | FALSE, TRUE, none, permute, random, anti | - |
| block.size | integer | 10 | \([1, \infty)\) | |
| bootstrap | character | by.root | by.root, by.node, none, by.user | - |
| samptype | character | swor | swor, swr | - |
| samp | untyped | - | - | |
| membership | logical | FALSE | TRUE, FALSE | - |
| sampsize | untyped | - | - | |
| sampsize.ratio | numeric | - | \([0, 1]\) | |
| na.action | character | na.omit | na.omit, na.impute | - |
| nimpute | integer | 1 | \([1, \infty)\) | |
| proximity | character | FALSE | FALSE, TRUE, inbag, oob, all | - |
| distance | character | FALSE | FALSE, TRUE, inbag, oob, all | - |
| forest.wt | character | FALSE | FALSE, TRUE, inbag, oob, all | - |
| xvar.wt | untyped | - | - | |
| split.wt | untyped | - | - | |
| forest | logical | TRUE | TRUE, FALSE | - |
| var.used | character | FALSE | FALSE, all.trees | - |
| split.depth | character | FALSE | FALSE, all.trees, by.tree | - |
| seed | integer | - | \((-\infty, -1]\) | |
| do.trace | logical | FALSE | TRUE, FALSE | - |
| get.tree | untyped | - | - | |
| outcome | character | train | train, test | - |
| ptn.count | integer | 0 | \([0, \infty)\) | |
| cores | integer | 1 | \([1, \infty)\) | |
| save.memory | logical | FALSE | TRUE, FALSE | - |
| perf.type | character | - | gmean, misclass, brier, none | - |
| case.depth | logical | FALSE | TRUE, FALSE | - |
| marginal.xvar | untyped | NULL | - |
Custom mlr3 parameters
mtry: This hyperparameter can alternatively be set via the added hyperparametermtry.ratioasmtry = max(ceiling(mtry.ratio * n_features), 1). Note thatmtryandmtry.ratioare mutually exclusive.sampsize: This hyperparameter can alternatively be set via the added hyperparametersampsize.ratioassampsize = max(ceiling(sampsize.ratio * n_obs), 1). Note thatsampsizeandsampsize.ratioare mutually exclusive.cores: This value is set as the optionrf.coresduring training and is set to 1 by default.
References
Breiman, Leo (2001). “Random Forests.” Machine Learning, 45(1), 5–32. ISSN 1573-0565, doi:10.1023/A:1010933404324 .
See also
as.data.table(mlr_learners)for a table of available Learners in the running session (depending on the loaded packages).Chapter in the mlr3book: https://mlr3book.mlr-org.com/basics.html#learners
mlr3learners for a selection of recommended learners.
mlr3cluster for unsupervised clustering learners.
mlr3pipelines to combine learners with pre- and postprocessing steps.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
Super classes
mlr3::Learner -> mlr3::LearnerClassif -> LearnerClassifRandomForestSRC
Methods
Inherited methods
Method importance()
The importance scores are extracted from the model slot importance, returned for
'all'.
Returns
Named numeric().
Method selected_features()
Selected features are extracted from the model slot var.used.
Note: Due to a known issue in randomForestSRC, enabling var.used = "all.trees"
causes prediction to fail. Therefore, this setting should be used exclusively
for feature selection purposes and not when prediction is required.
Examples
# Define the Learner
learner = lrn("classif.rfsrc", importance = "TRUE")
print(learner)
#>
#> ── <LearnerClassifRandomForestSRC> (classif.rfsrc): Random Forest ──────────────
#> • Model: -
#> • Parameters: importance=TRUE
#> • Packages: mlr3, mlr3extralearners, and randomForestSRC
#> • Predict Types: [response] and prob
#> • Feature Types: logical, integer, numeric, and factor
#> • Encapsulation: none (fallback: -)
#> • Properties: importance, missings, multiclass, oob_error, selected_features,
#> twoclass, and weights
#> • Other settings: use_weights = 'use'
# Define a Task
task = tsk("sonar")
# Create train and test set
ids = partition(task)
# Train the learner on the training ids
learner$train(task, row_ids = ids$train)
print(learner$model)
#> Sample size: 139
#> Frequency of class labels: M=72, R=67
#> Number of trees: 500
#> Forest terminal node size: 1
#> Average no. of terminal nodes: 16.732
#> No. of variables tried at each split: 8
#> Total no. of variables: 60
#> Resampling used to grow trees: swor
#> Resample size used to grow trees: 88
#> Analysis: RF-C
#> Family: class
#> Splitting rule: gini *random*
#> Number of random split points: 10
#> Imbalanced ratio: 1.0746
#> (OOB) Brier score: 0.13227092
#> (OOB) Normalized Brier score: 0.52908369
#> (OOB) AUC: 0.91873964
#> (OOB) Log-loss: 0.42307233
#> (OOB) PR-AUC: 0.91184555
#> (OOB) G-mean: 0.83059251
#> (OOB) Requested performance error: 0.16546763, 0.11111111, 0.2238806
#>
#> Confusion matrix:
#>
#> predicted
#> observed M R class.error
#> M 64 8 0.1111
#> R 15 52 0.2239
#>
#> (OOB) Misclassification rate: 0.1654676
#>
#> Random-classifier baselines (uniform):
#> Brier: 0.25 Normalized Brier: 1 Log-loss: 0.69314718
print(learner$importance())
#> V11 V9 V10 V12 V48 V37
#> 0.068989484 0.063446851 0.048764997 0.045972138 0.039006647 0.036130527
#> V51 V52 V36 V20 V49 V44
#> 0.026123782 0.019178717 0.018588287 0.017122131 0.016978202 0.016412260
#> V7 V15 V47 V21 V45 V5
#> 0.016015687 0.015989083 0.015687791 0.015076235 0.013777957 0.012641736
#> V16 V13 V6 V18 V54 V31
#> 0.012317167 0.012191024 0.011611404 0.011468716 0.011360987 0.009996304
#> V22 V27 V19 V46 V28 V17
#> 0.009549669 0.009420658 0.009412284 0.009153908 0.008611458 0.008582693
#> V40 V8 V4 V34 V29 V59
#> 0.008446398 0.008442043 0.008423091 0.007988248 0.007712223 0.007538561
#> V43 V35 V56 V30 V39 V38
#> 0.006982202 0.006534571 0.006406803 0.006388509 0.006213070 0.005809015
#> V50 V2 V53 V26 V32 V23
#> 0.005633344 0.005372069 0.005201736 0.004925650 0.004807002 0.004776475
#> V41 V3 V33 V14 V60 V57
#> 0.004512885 0.004500497 0.004363986 0.004363925 0.003777760 0.003764052
#> V58 V24 V25 V42 V1 V55
#> 0.003621118 0.003610630 0.003188528 0.002612988 0.002182484 0.000581765
# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)
# Score the predictions
predictions$score()
#> classif.ce
#> 0.2173913