Shrinkage Discriminant Analysis for classification.
Calls sda::sda() from sda.
Parameters
| Id | Type | Default | Levels | Range |
| lambda | numeric | - | \([0, 1]\) | |
| lambda.var | numeric | - | \([0, 1]\) | |
| lambda.freqs | numeric | - | \([0, 1]\) | |
| diagonal | logical | FALSE | TRUE, FALSE | - |
| verbose | logical | FALSE | TRUE, FALSE | - |
References
Ahdesmaeki, Miika, Strimmer, Korbinian (2010). “Feature selection in omics prediction problems using cat scores and false nondiscovery rate control.” The Annals of Applied Statistics, 4(1). ISSN 1932-6157, doi:10.1214/09-aoas277 , http://dx.doi.org/10.1214/09-AOAS277.
See also
as.data.table(mlr_learners)for a table of available Learners in the running session (depending on the loaded packages).Chapter in the mlr3book: https://mlr3book.mlr-org.com/basics.html#learners
mlr3learners for a selection of recommended learners.
mlr3cluster for unsupervised clustering learners.
mlr3pipelines to combine learners with pre- and postprocessing steps.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
Super classes
mlr3::Learner -> mlr3::LearnerClassif -> LearnerClassifSda
Methods
Inherited methods
mlr3::Learner$base_learner()mlr3::Learner$configure()mlr3::Learner$encapsulate()mlr3::Learner$format()mlr3::Learner$help()mlr3::Learner$predict()mlr3::Learner$predict_newdata()mlr3::Learner$print()mlr3::Learner$reset()mlr3::Learner$selected_features()mlr3::Learner$train()mlr3::LearnerClassif$predict_newdata_fast()
Examples
# Define the Learner
learner = lrn("classif.sda")
print(learner)
#>
#> ── <LearnerClassifSda> (classif.sda): Shrinkage Discriminant Analysis ──────────
#> • Model: -
#> • Parameters: list()
#> • Packages: mlr3 and sda
#> • Predict Types: [response] and prob
#> • Feature Types: integer and numeric
#> • Encapsulation: none (fallback: -)
#> • Properties: multiclass and twoclass
#> • Other settings: use_weights = 'error'
# Define a Task
task = tsk("sonar")
# Create train and test set
ids = partition(task)
# Train the learner on the training ids
learner$train(task, row_ids = ids$train)
#> Number of variables: 60
#> Number of observations: 139
#> Number of classes: 2
#>
#> Estimating optimal shrinkage intensity lambda.freq (frequencies): 1
#> Estimating variances (pooled across classes)
#> Estimating optimal shrinkage intensity lambda.var (variance vector): 0.0202
#>
#>
#> Computing inverse correlation matrix (pooled across classes)
#> Estimating optimal shrinkage intensity lambda (correlation matrix): 0.1099
print(learner$model)
#> $regularization
#> lambda lambda.var lambda.freqs
#> 0.10988099 0.02017287 1.00000000
#>
#> $freqs
#> M R
#> 0.5 0.5
#>
#> $alpha
#> M R
#> -4.577491 1.722474
#>
#> $beta
#> V1 V10 V11 V12 V13 V14 V15
#> M 2.381774 2.263576 2.896455 1.381973 1.359632 -0.5823447 0.03958994
#> R -2.381774 -2.263576 -2.896455 -1.381973 -1.359632 0.5823447 -0.03958994
#> V16 V17 V18 V19 V2 V20 V21
#> M -0.9173366 -0.991168 -0.2529045 0.439527 2.934171 1.13024 0.4060395
#> R 0.9173366 0.991168 0.2529045 -0.439527 -2.934171 -1.13024 -0.4060395
#> V22 V23 V24 V25 V26 V27 V28
#> M -0.3441307 0.9665643 1.662665 -0.9261884 -1.066656 0.2128543 0.7002912
#> R 0.3441307 -0.9665643 -1.662665 0.9261884 1.066656 -0.2128543 -0.7002912
#> V29 V3 V30 V31 V32 V33 V34
#> M -0.1765646 -2.65703 0.4053427 -1.610869 -0.05083671 -0.2415409 -0.09671183
#> R 0.1765646 2.65703 -0.4053427 1.610869 0.05083671 0.2415409 0.09671183
#> V35 V36 V37 V38 V39 V4 V40
#> M 1.137166 -1.914781 -1.811469 1.679586 1.749538 4.966688 -2.162126
#> R -1.137166 1.914781 1.811469 -1.679586 -1.749538 -4.966688 2.162126
#> V41 V42 V43 V44 V45 V46 V47
#> M 0.7773552 0.1540102 -0.2132574 0.09551115 1.583804 4.386299 4.864782
#> R -0.7773552 -0.1540102 0.2132574 -0.09551115 -1.583804 -4.386299 -4.864782
#> V48 V49 V5 V50 V51 V52 V53
#> M 1.044872 10.13124 2.283336 -23.22618 -6.753243 -10.73949 4.351085
#> R -1.044872 -10.13124 -2.283336 23.22618 6.753243 10.73949 -4.351085
#> V54 V55 V56 V57 V58 V59 V6
#> M -1.102936 -14.07191 6.873144 -18.30104 5.017732 7.452966 -1.136884
#> R 1.102936 14.07191 -6.873144 18.30104 -5.017732 -7.452966 1.136884
#> V60 V7 V8 V9
#> M -5.854724 1.528359 -2.37647 -0.1201771
#> R 5.854724 -1.528359 2.37647 0.1201771
#> attr(,"class")
#> [1] "shrinkage"
#>
#> attr(,"class")
#> [1] "sda"
# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)
#> Prediction uses 60 features.
# Score the predictions
predictions$score()
#> classif.ce
#> 0.2753623