Shrinkage Discriminant Analysis for classification.
Calls sda::sda() from sda.
Parameters
| Id | Type | Default | Levels | Range |
| lambda | numeric | - | \([0, 1]\) | |
| lambda.var | numeric | - | \([0, 1]\) | |
| lambda.freqs | numeric | - | \([0, 1]\) | |
| diagonal | logical | FALSE | TRUE, FALSE | - |
| verbose | logical | FALSE | TRUE, FALSE | - |
References
Ahdesmaeki, Miika, Strimmer, Korbinian (2010). “Feature selection in omics prediction problems using cat scores and false nondiscovery rate control.” The Annals of Applied Statistics, 4(1). ISSN 1932-6157, doi:10.1214/09-aoas277 , http://dx.doi.org/10.1214/09-AOAS277.
See also
as.data.table(mlr_learners)for a table of available Learners in the running session (depending on the loaded packages).Chapter in the mlr3book: https://mlr3book.mlr-org.com/basics.html#learners
mlr3learners for a selection of recommended learners.
mlr3cluster for unsupervised clustering learners.
mlr3pipelines to combine learners with pre- and postprocessing steps.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
Super classes
mlr3::Learner -> mlr3::LearnerClassif -> LearnerClassifSda
Methods
Inherited methods
mlr3::Learner$base_learner()mlr3::Learner$configure()mlr3::Learner$encapsulate()mlr3::Learner$format()mlr3::Learner$help()mlr3::Learner$predict()mlr3::Learner$predict_newdata()mlr3::Learner$print()mlr3::Learner$reset()mlr3::Learner$selected_features()mlr3::Learner$train()mlr3::LearnerClassif$predict_newdata_fast()
Examples
# Define the Learner
learner = lrn("classif.sda")
print(learner)
#>
#> ── <LearnerClassifSda> (classif.sda): Shrinkage Discriminant Analysis ──────────
#> • Model: -
#> • Parameters: list()
#> • Packages: mlr3 and sda
#> • Predict Types: [response] and prob
#> • Feature Types: integer and numeric
#> • Encapsulation: none (fallback: -)
#> • Properties: multiclass and twoclass
#> • Other settings: use_weights = 'error'
# Define a Task
task = tsk("sonar")
# Create train and test set
ids = partition(task)
# Train the learner on the training ids
learner$train(task, row_ids = ids$train)
#> Number of variables: 60
#> Number of observations: 139
#> Number of classes: 2
#>
#> Estimating optimal shrinkage intensity lambda.freq (frequencies): 1
#> Estimating variances (pooled across classes)
#> Estimating optimal shrinkage intensity lambda.var (variance vector): 0.0213
#>
#>
#> Computing inverse correlation matrix (pooled across classes)
#> Estimating optimal shrinkage intensity lambda (correlation matrix): 0.1127
print(learner$model)
#> $regularization
#> lambda lambda.var lambda.freqs
#> 0.11267965 0.02129866 1.00000000
#>
#> $freqs
#> M R
#> 0.5 0.5
#>
#> $alpha
#> M R
#> -2.8556388 -0.1672204
#>
#> $beta
#> V1 V10 V11 V12 V13 V14 V15
#> M 4.999431 1.937673 2.404084 3.337852 0.7031963 -2.556623 -0.7972438
#> R -4.999431 -1.937673 -2.404084 -3.337852 -0.7031963 2.556623 0.7972438
#> V16 V17 V18 V19 V2 V20 V21
#> M -1.858552 -0.407272 0.6474427 -0.09211405 2.506082 0.6314781 0.8516162
#> R 1.858552 0.407272 -0.6474427 0.09211405 -2.506082 -0.6314781 -0.8516162
#> V22 V23 V24 V25 V26 V27 V28
#> M 0.1360707 1.258802 1.629285 -1.240859 -1.217474 -0.2232355 -0.6078952
#> R -0.1360707 -1.258802 -1.629285 1.240859 1.217474 0.2232355 0.6078952
#> V29 V3 V30 V31 V32 V33 V34
#> M -0.3074148 -5.624543 2.098803 -1.738686 -0.8558517 -0.2864406 -1.215803
#> R 0.3074148 5.624543 -2.098803 1.738686 0.8558517 0.2864406 1.215803
#> V35 V36 V37 V38 V39 V4 V40
#> M 0.3094146 -1.609466 -2.547517 1.216007 1.401871 4.312386 -2.720573
#> R -0.3094146 1.609466 2.547517 -1.216007 -1.401871 -4.312386 2.720573
#> V41 V42 V43 V44 V45 V46 V47
#> M 1.333003 -0.3803823 2.159334 1.24491 1.442108 3.72763 2.776398
#> R -1.333003 0.3803823 -2.159334 -1.24491 -1.442108 -3.72763 -2.776398
#> V48 V49 V5 V50 V51 V52 V53 V54
#> M -1.228334 10.32 5.730305 -20.00967 -5.894276 -9.375096 -0.1063777 2.898305
#> R 1.228334 -10.32 -5.730305 20.00967 5.894276 9.375096 0.1063777 -2.898305
#> V55 V56 V57 V58 V59 V6 V60
#> M -12.46157 4.459765 -5.217777 -3.863221 13.44334 4.24373 -10.63076
#> R 12.46157 -4.459765 5.217777 3.863221 -13.44334 -4.24373 10.63076
#> V7 V8 V9
#> M -1.906875 -3.119802 1.818349
#> R 1.906875 3.119802 -1.818349
#> attr(,"class")
#> [1] "shrinkage"
#>
#> attr(,"class")
#> [1] "sda"
# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)
#> Prediction uses 60 features.
# Score the predictions
predictions$score()
#> classif.ce
#> 0.3043478