Shrinkage Discriminant Analysis for classification.
Calls sda::sda() from sda.
Parameters
| Id | Type | Default | Levels | Range |
| lambda | numeric | - | \([0, 1]\) | |
| lambda.var | numeric | - | \([0, 1]\) | |
| lambda.freqs | numeric | - | \([0, 1]\) | |
| diagonal | logical | FALSE | TRUE, FALSE | - |
| verbose | logical | FALSE | TRUE, FALSE | - |
References
Ahdesmaeki, Miika, Strimmer, Korbinian (2010). “Feature selection in omics prediction problems using cat scores and false nondiscovery rate control.” The Annals of Applied Statistics, 4(1). ISSN 1932-6157, doi:10.1214/09-aoas277 , http://dx.doi.org/10.1214/09-AOAS277.
See also
as.data.table(mlr_learners)for a table of available Learners in the running session (depending on the loaded packages).Chapter in the mlr3book: https://mlr3book.mlr-org.com/basics.html#learners
mlr3learners for a selection of recommended learners.
mlr3cluster for unsupervised clustering learners.
mlr3pipelines to combine learners with pre- and postprocessing steps.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
Super classes
mlr3::Learner -> mlr3::LearnerClassif -> LearnerClassifSda
Methods
Inherited methods
mlr3::Learner$base_learner()mlr3::Learner$configure()mlr3::Learner$encapsulate()mlr3::Learner$format()mlr3::Learner$help()mlr3::Learner$predict()mlr3::Learner$predict_newdata()mlr3::Learner$print()mlr3::Learner$reset()mlr3::Learner$selected_features()mlr3::Learner$train()mlr3::LearnerClassif$predict_newdata_fast()
Examples
# Define the Learner
learner = lrn("classif.sda")
print(learner)
#>
#> ── <LearnerClassifSda> (classif.sda): Shrinkage Discriminant Analysis ──────────
#> • Model: -
#> • Parameters: list()
#> • Packages: mlr3 and sda
#> • Predict Types: [response] and prob
#> • Feature Types: integer and numeric
#> • Encapsulation: none (fallback: -)
#> • Properties: multiclass and twoclass
#> • Other settings: use_weights = 'error'
# Define a Task
task = tsk("sonar")
# Create train and test set
ids = partition(task)
# Train the learner on the training ids
learner$train(task, row_ids = ids$train)
#> Number of variables: 60
#> Number of observations: 139
#> Number of classes: 2
#>
#> Estimating optimal shrinkage intensity lambda.freq (frequencies): 1
#> Estimating variances (pooled across classes)
#> Estimating optimal shrinkage intensity lambda.var (variance vector): 0.0223
#>
#>
#> Computing inverse correlation matrix (pooled across classes)
#> Estimating optimal shrinkage intensity lambda (correlation matrix): 0.1068
print(learner$model)
#> $regularization
#> lambda lambda.var lambda.freqs
#> 0.10681114 0.02232994 1.00000000
#>
#> $freqs
#> M R
#> 0.5 0.5
#>
#> $alpha
#> M R
#> -4.705432 2.107602
#>
#> $beta
#> V1 V10 V11 V12 V13 V14 V15
#> M 2.679348 0.6978864 1.713413 1.854407 1.734366 0.1869156 -0.03188255
#> R -2.679348 -0.6978864 -1.713413 -1.854407 -1.734366 -0.1869156 0.03188255
#> V16 V17 V18 V19 V2 V20 V21
#> M -1.070842 -1.321056 -0.06611647 0.8704691 -1.705445 0.20969 0.823231
#> R 1.070842 1.321056 0.06611647 -0.8704691 1.705445 -0.20969 -0.823231
#> V22 V23 V24 V25 V26 V27 V28
#> M 0.896763 0.4558563 0.4432555 -0.8788303 -0.7452515 0.132725 1.144788
#> R -0.896763 -0.4558563 -0.4432555 0.8788303 0.7452515 -0.132725 -1.144788
#> V29 V3 V30 V31 V32 V33 V34
#> M -0.1600363 -5.994905 0.4094175 -1.579523 1.41346 -0.1056821 -0.7992412
#> R 0.1600363 5.994905 -0.4094175 1.579523 -1.41346 0.1056821 0.7992412
#> V35 V36 V37 V38 V39 V4 V40
#> M 1.077116 -1.648136 -0.3294781 0.875727 0.06293901 9.660354 -2.03327
#> R -1.077116 1.648136 0.3294781 -0.875727 -0.06293901 -9.660354 2.03327
#> V41 V42 V43 V44 V45 V46 V47
#> M 0.2175727 -1.258125 2.28371 -0.01204562 0.7383798 1.822213 2.999243
#> R -0.2175727 1.258125 -2.28371 0.01204562 -0.7383798 -1.822213 -2.999243
#> V48 V49 V5 V50 V51 V52 V53
#> M 6.689487 9.576705 0.3466086 -18.63417 -6.156326 0.9069582 2.527949
#> R -6.689487 -9.576705 -0.3466086 18.63417 6.156326 -0.9069582 -2.527949
#> V54 V55 V56 V57 V58 V59 V6
#> M -1.488254 -10.45784 -0.2757738 -1.288188 -3.857884 3.387145 -0.7923561
#> R 1.488254 10.45784 0.2757738 1.288188 3.857884 -3.387145 0.7923561
#> V60 V7 V8 V9
#> M -2.541793 0.5911045 -2.154509 2.209904
#> R 2.541793 -0.5911045 2.154509 -2.209904
#> attr(,"class")
#> [1] "shrinkage"
#>
#> attr(,"class")
#> [1] "sda"
# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)
#> Prediction uses 60 features.
# Score the predictions
predictions$score()
#> classif.ce
#> 0.2173913