Classification SimpleLogistic Learner
Source:R/learner_RWeka_classif_simple_logistic.R
mlr_learners_classif.simple_logistic.RdLogitBoost with simple regression functions as base learners.
Calls RWeka::make_Weka_classifier() from RWeka.
Custom mlr3 parameters
output_debug_info:original id: output-debug-info
do_not_check_capabilities:original id: do-not-check-capabilities
num_decimal_places:original id: num-decimal-places
batch_size:original id: batch-size
Reason for change: This learner contains changed ids of the following control arguments since their ids contain irregular pattern
Parameters
| Id | Type | Default | Levels | Range |
| subset | untyped | - | - | |
| na.action | untyped | - | - | |
| I | integer | - | \((-\infty, \infty)\) | |
| S | logical | FALSE | TRUE, FALSE | - |
| P | logical | FALSE | TRUE, FALSE | - |
| M | integer | - | \((-\infty, \infty)\) | |
| H | integer | 50 | \((-\infty, \infty)\) | |
| W | numeric | 0 | \((-\infty, \infty)\) | |
| A | logical | FALSE | TRUE, FALSE | - |
| output_debug_info | logical | FALSE | TRUE, FALSE | - |
| do_not_check_capabilities | logical | FALSE | TRUE, FALSE | - |
| num_decimal_places | integer | 2 | \([1, \infty)\) | |
| batch_size | integer | 100 | \([1, \infty)\) | |
| options | untyped | NULL | - |
References
Landwehr, Niels, Hall, Mark, Frank, Eibe (2005). “Logistic model trees.” Machine learning, 59(1), 161–205.
Sumner M, Frank E, Hall M (2005). “Speeding up Logistic Model Tree Induction.” In 9th European Conference on Principles and Practice of Knowledge Discovery in Databases, 675-683.
See also
as.data.table(mlr_learners)for a table of available Learners in the running session (depending on the loaded packages).Chapter in the mlr3book: https://mlr3book.mlr-org.com/basics.html#learners
mlr3learners for a selection of recommended learners.
mlr3cluster for unsupervised clustering learners.
mlr3pipelines to combine learners with pre- and postprocessing steps.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
Super classes
mlr3::Learner -> mlr3::LearnerClassif -> LearnerClassifSimpleLogistic
Methods
Inherited methods
mlr3::Learner$base_learner()mlr3::Learner$configure()mlr3::Learner$encapsulate()mlr3::Learner$format()mlr3::Learner$help()mlr3::Learner$predict()mlr3::Learner$predict_newdata()mlr3::Learner$print()mlr3::Learner$reset()mlr3::Learner$selected_features()mlr3::Learner$train()mlr3::LearnerClassif$predict_newdata_fast()
Method marshal()
Marshal the learner's model.
Arguments
...(any)
Additional arguments passed tomlr3::marshal_model().
Method unmarshal()
Unmarshal the learner's model.
Arguments
...(any)
Additional arguments passed tomlr3::unmarshal_model().
Examples
# Define the Learner
learner = lrn("classif.simple_logistic")
print(learner)
#>
#> ── <LearnerClassifSimpleLogistic> (classif.simple_logistic): LogitBoost Based Lo
#> • Model: -
#> • Parameters: list()
#> • Packages: mlr3 and RWeka
#> • Predict Types: [response] and prob
#> • Feature Types: logical, integer, numeric, factor, and ordered
#> • Encapsulation: none (fallback: -)
#> • Properties: marshal, missings, multiclass, and twoclass
#> • Other settings: use_weights = 'error'
# Define a Task
task = tsk("sonar")
# Create train and test set
ids = partition(task)
# Train the learner on the training ids
learner$train(task, row_ids = ids$train)
print(learner$model)
#> SimpleLogistic:
#>
#> Class M :
#> -3.83 +
#> [V10] * 1.42 +
#> [V11] * 3.8 +
#> [V16] * -0.79 +
#> [V2] * 7.38 +
#> [V23] * 2.27 +
#> [V28] * 0.72 +
#> [V34] * -0.96 +
#> [V36] * -1.08 +
#> [V4] * 4.5 +
#> [V44] * 1.71 +
#> [V45] * 2.32 +
#> [V52] * 59.7 +
#> [V56] * 30.85 +
#> [V7] * -2.76
#>
#> Class R :
#> 3.83 +
#> [V10] * -1.42 +
#> [V11] * -3.8 +
#> [V16] * 0.79 +
#> [V2] * -7.38 +
#> [V23] * -2.27 +
#> [V28] * -0.72 +
#> [V34] * 0.96 +
#> [V36] * 1.08 +
#> [V4] * -4.5 +
#> [V44] * -1.71 +
#> [V45] * -2.32 +
#> [V52] * -59.7 +
#> [V56] * -30.85 +
#> [V7] * 2.76
#>
# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)
# Score the predictions
predictions$score()
#> classif.ce
#> 0.4057971