Classification Logistic Regression Learner
Source:R/learner_stepPlr_classif_plr.R
mlr_learners_classif.stepPlr.RdLogistic regression with a quadratic penalization on the coefficient.
Calls stepPlr::plr() from stepPlr.
Parameters
| Id | Type | Default | Levels | Range |
| cp | character | aic | aic, bic | - |
| lambda | numeric | 1e-04 | \([0, \infty)\) | |
| offset.coefficients | untyped | - | - | |
| offset.subset | untyped | - | - |
References
Park, Young M, Hastie, Trevor (2007). “Penalized logistic regression for detecting gene interactions.” Biostatistics, 9(1), 30-50. ISSN 1465-4644, doi:10.1093/biostatistics/kxm010 , https://doi.org/10.1093/biostatistics/kxm010.
See also
as.data.table(mlr_learners)for a table of available Learners in the running session (depending on the loaded packages).Chapter in the mlr3book: https://mlr3book.mlr-org.com/basics.html#learners
mlr3learners for a selection of recommended learners.
mlr3cluster for unsupervised clustering learners.
mlr3pipelines to combine learners with pre- and postprocessing steps.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
Super classes
mlr3::Learner -> mlr3::LearnerClassif -> LearnerClassifStepPlr
Methods
Inherited methods
mlr3::Learner$base_learner()mlr3::Learner$configure()mlr3::Learner$encapsulate()mlr3::Learner$format()mlr3::Learner$help()mlr3::Learner$predict()mlr3::Learner$predict_newdata()mlr3::Learner$print()mlr3::Learner$reset()mlr3::Learner$selected_features()mlr3::Learner$train()mlr3::LearnerClassif$predict_newdata_fast()
Examples
# Define the Learner
learner = lrn("classif.stepPlr")
print(learner)
#>
#> ── <LearnerClassifStepPlr> (classif.stepPlr): Logistic Regression with a L2 Pena
#> • Model: -
#> • Parameters: list()
#> • Packages: mlr3 and stepPlr
#> • Predict Types: [response] and prob
#> • Feature Types: logical, integer, and numeric
#> • Encapsulation: none (fallback: -)
#> • Properties: twoclass and weights
#> • Other settings: use_weights = 'use'
# Define a Task
task = tsk("sonar")
# Create train and test set
ids = partition(task)
# Train the learner on the training ids
learner$train(task, row_ids = ids$train)
print(learner$model)
#>
#> Call:
#> stepPlr::plr(x = data, y = y)
#>
#> Coefficients:
#> Intercept V1 V10 V11 V12 V13 V14 V15
#> 18.29272 -18.31745 15.58348 -19.51640 -21.78775 -9.47918 8.68568 0.45574
#> V16 V17 V18 V19 V2 V20 V21 V22
#> -10.64741 14.53161 -12.66782 22.05477 -3.47062 -12.34053 11.69191 -14.55019
#> V23 V24 V25 V26 V27 V28 V29 V3
#> 2.09804 -30.47495 25.48542 -3.54939 -1.96406 5.22964 -4.05070 50.51725
#> V30 V31 V32 V33 V34 V35 V36 V37
#> -20.18355 39.38275 -33.29592 14.85928 3.47603 -7.40269 -5.02975 20.68580
#> V38 V39 V4 V40 V41 V42 V43 V44
#> 4.37943 -23.61679 -35.02317 24.40856 0.76690 -19.91197 20.69558 -8.01934
#> V45 V46 V47 V48 V49 V5 V50 V51
#> -14.61651 16.95935 -34.36480 -26.90524 -77.22433 2.40451 134.20492 -42.10717
#> V52 V53 V54 V55 V56 V57 V58 V59
#> -94.28974 -60.87414 11.80911 3.71431 -5.72339 -7.07681 -52.81388 -39.13669
#> V6 V60 V7 V8 V9
#> -6.96265 11.87613 20.29373 31.28263 -30.01801
#>
#> Null deviance: 192.52 on 138 degrees of freedom
#> Residual deviance: 24.59 on 91.67 degrees of freedom
#> Score: deviance + 4.9 * df = 258.15
# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)
# Score the predictions
predictions$score()
#> classif.ce
#> 0.1884058