Skip to contents

Logistic regression with a quadratic penalization on the coefficient. Calls stepPlr::plr() from stepPlr.

Dictionary

This Learner can be instantiated via lrn():

lrn("classif.stepPlr")

Meta Information

  • Task type: “classif”

  • Predict Types: “response”, “prob”

  • Feature Types: “logical”, “integer”, “numeric”

  • Required Packages: mlr3, stepPlr

Parameters

IdTypeDefaultLevelsRange
cpcharacteraicaic, bic-
lambdanumeric1e-04\([0, \infty)\)
offset.coefficientsuntyped--
offset.subsetuntyped--

References

Park, Young M, Hastie, Trevor (2007). “Penalized logistic regression for detecting gene interactions.” Biostatistics, 9(1), 30-50. ISSN 1465-4644, doi:10.1093/biostatistics/kxm010 , https://doi.org/10.1093/biostatistics/kxm010.

See also

Author

annanzrv

Super classes

mlr3::Learner -> mlr3::LearnerClassif -> LearnerClassifStepPlr

Methods

Inherited methods


Method new()

Creates a new instance of this R6 class.

Usage


Method clone()

The objects of this class are cloneable with this method.

Usage

LearnerClassifStepPlr$clone(deep = FALSE)

Arguments

deep

Whether to make a deep clone.

Examples

# Define the Learner
learner = lrn("classif.stepPlr")
print(learner)
#> 
#> ── <LearnerClassifStepPlr> (classif.stepPlr): Logistic Regression with a L2 Pena
#> • Model: -
#> • Parameters: list()
#> • Packages: mlr3 and stepPlr
#> • Predict Types: [response] and prob
#> • Feature Types: logical, integer, and numeric
#> • Encapsulation: none (fallback: -)
#> • Properties: twoclass and weights
#> • Other settings: use_weights = 'use'

# Define a Task
task = tsk("sonar")

# Create train and test set
ids = partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)
#> 
#> Call:
#> stepPlr::plr(x = data, y = y)
#> 
#> Coefficients:
#> Intercept        V1       V10       V11       V12       V13       V14       V15 
#>  18.29272 -18.31745  15.58348 -19.51640 -21.78775  -9.47918   8.68568   0.45574 
#>       V16       V17       V18       V19        V2       V20       V21       V22 
#> -10.64741  14.53161 -12.66782  22.05477  -3.47062 -12.34053  11.69191 -14.55019 
#>       V23       V24       V25       V26       V27       V28       V29        V3 
#>   2.09804 -30.47495  25.48542  -3.54939  -1.96406   5.22964  -4.05070  50.51725 
#>       V30       V31       V32       V33       V34       V35       V36       V37 
#> -20.18355  39.38275 -33.29592  14.85928   3.47603  -7.40269  -5.02975  20.68580 
#>       V38       V39        V4       V40       V41       V42       V43       V44 
#>   4.37943 -23.61679 -35.02317  24.40856   0.76690 -19.91197  20.69558  -8.01934 
#>       V45       V46       V47       V48       V49        V5       V50       V51 
#> -14.61651  16.95935 -34.36480 -26.90524 -77.22433   2.40451 134.20492 -42.10717 
#>       V52       V53       V54       V55       V56       V57       V58       V59 
#> -94.28974 -60.87414  11.80911   3.71431  -5.72339  -7.07681 -52.81388 -39.13669 
#>        V6       V60        V7        V8        V9 
#>  -6.96265  11.87613  20.29373  31.28263 -30.01801 
#> 
#>     Null deviance: 192.52 on 138 degrees of freedom
#> Residual deviance: 24.59 on 91.67 degrees of freedom
#>             Score: deviance + 4.9 * df = 258.15 


# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()
#> classif.ce 
#>  0.1884058