Density KS Kernel Learner
mlr_learners_dens.kde_ks.RdMeta Information
Task type: “dens”
Predict Types: “pdf”
Feature Types: “integer”, “numeric”
Required Packages: mlr3, mlr3proba, mlr3extralearners, ks
Parameters
| Id | Type | Default | Levels | Range |
| h | numeric | - | \([0, \infty)\) | |
| H | untyped | - | - | |
| gridsize | untyped | - | - | |
| gridtype | untyped | - | - | |
| xmin | numeric | - | \((-\infty, \infty)\) | |
| xmax | numeric | - | \((-\infty, \infty)\) | |
| supp | numeric | 3.7 | \((-\infty, \infty)\) | |
| binned | numeric | - | \((-\infty, \infty)\) | |
| bgridsize | untyped | - | - | |
| positive | logical | FALSE | TRUE, FALSE | - |
| adj.positive | untyped | - | - | |
| w | untyped | - | - | |
| compute.cont | logical | TRUE | TRUE, FALSE | - |
| approx.cont | logical | TRUE | TRUE, FALSE | - |
| unit.interval | logical | FALSE | TRUE, FALSE | - |
| verbose | logical | FALSE | TRUE, FALSE | - |
| density | logical | FALSE | TRUE, FALSE | - |
References
Gramacki, Artur, Gramacki, Jarosław (2017). “FFT-based fast computation of multivariate kernel density estimators with unconstrained bandwidth matrices.” Journal of Computational and Graphical Statistics, 26(2), 459–462.
See also
as.data.table(mlr_learners)for a table of available Learners in the running session (depending on the loaded packages).Chapter in the mlr3book: https://mlr3book.mlr-org.com/basics.html#learners
mlr3learners for a selection of recommended learners.
mlr3cluster for unsupervised clustering learners.
mlr3pipelines to combine learners with pre- and postprocessing steps.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
Super classes
mlr3::Learner -> mlr3proba::LearnerDens -> LearnerDensKDEks
Examples
# Define the Learner
learner = mlr3::lrn("dens.kde_ks")
print(learner)
#>
#> ── <LearnerDensKDEks> (dens.kde_ks): Kernel Density Estimator ──────────────────
#> • Model: -
#> • Parameters: list()
#> • Packages: mlr3, mlr3proba, mlr3extralearners, and ks
#> • Predict Types: [pdf]
#> • Feature Types: integer and numeric
#> • Encapsulation: none (fallback: -)
#> • Properties:
#> • Other settings: use_weights = 'error'
# Define a Task
task = mlr3::tsk("faithful")
# Create train and test set
ids = mlr3::partition(task)
# Train the learner on the training ids
learner$train(task, row_ids = ids$train)
print(learner$model)
#> ksKDE()
# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)
# Score the predictions
predictions$score()
#> dens.logloss
#> 1.035744