Density KS Kernel Learner
mlr_learners_dens.kde_ks.Rd
Meta Information
Task type: “dens”
Predict Types: “pdf”
Feature Types: “integer”, “numeric”
Required Packages: mlr3, mlr3proba, mlr3extralearners, ks
Parameters
Id | Type | Default | Levels | Range |
h | numeric | - | \([0, \infty)\) | |
H | untyped | - | - | |
gridsize | untyped | - | - | |
gridtype | untyped | - | - | |
xmin | numeric | - | \((-\infty, \infty)\) | |
xmax | numeric | - | \((-\infty, \infty)\) | |
supp | numeric | 3.7 | \((-\infty, \infty)\) | |
binned | numeric | - | \((-\infty, \infty)\) | |
bgridsize | untyped | - | - | |
positive | logical | FALSE | TRUE, FALSE | - |
adj.positive | untyped | - | - | |
w | untyped | - | - | |
compute.cont | logical | TRUE | TRUE, FALSE | - |
approx.cont | logical | TRUE | TRUE, FALSE | - |
unit.interval | logical | FALSE | TRUE, FALSE | - |
verbose | logical | FALSE | TRUE, FALSE | - |
density | logical | FALSE | TRUE, FALSE | - |
References
Gramacki, Artur, Gramacki, Jarosław (2017). “FFT-based fast computation of multivariate kernel density estimators with unconstrained bandwidth matrices.” Journal of Computational and Graphical Statistics, 26(2), 459–462.
See also
as.data.table(mlr_learners)
for a table of available Learners in the running session (depending on the loaded packages).Chapter in the mlr3book: https://mlr3book.mlr-org.com/basics.html#learners
mlr3learners for a selection of recommended learners.
mlr3cluster for unsupervised clustering learners.
mlr3pipelines to combine learners with pre- and postprocessing steps.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
Super classes
mlr3::Learner
-> mlr3proba::LearnerDens
-> LearnerDensKDEks
Examples
# Define the Learner
learner = mlr3::lrn("dens.kde_ks")
print(learner)
#> <LearnerDensKDEks:dens.kde_ks>: Kernel Density Estimator
#> * Model: -
#> * Parameters: list()
#> * Packages: mlr3, mlr3proba, mlr3extralearners, ks
#> * Predict Types: [pdf]
#> * Feature Types: integer, numeric
#> * Properties: -
# Define a Task
task = mlr3::tsk("faithful")
# Create train and test set
ids = mlr3::partition(task)
# Train the learner on the training ids
learner$train(task, row_ids = ids$train)
print(learner$model)
#> ksKDE()
# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)
# Score the predictions
predictions$score()
#> dens.logloss
#> 0.9991155