Skip to contents

Kernel density estimator. Calls ks::kde() from ks.

Dictionary

This Learner can be instantiated via lrn():

lrn("dens.kde_ks")

Meta Information

Parameters

IdTypeDefaultLevelsRange
hnumeric-\([0, \infty)\)
Huntyped--
gridsizeuntyped--
gridtypeuntyped--
xminnumeric-\((-\infty, \infty)\)
xmaxnumeric-\((-\infty, \infty)\)
suppnumeric3.7\((-\infty, \infty)\)
binnednumeric-\((-\infty, \infty)\)
bgridsizeuntyped--
positivelogicalFALSETRUE, FALSE-
adj.positiveuntyped--
wuntyped--
compute.contlogicalTRUETRUE, FALSE-
approx.contlogicalTRUETRUE, FALSE-
unit.intervallogicalFALSETRUE, FALSE-
verboselogicalFALSETRUE, FALSE-
densitylogicalFALSETRUE, FALSE-

References

Gramacki, Artur, Gramacki, Jarosław (2017). “FFT-based fast computation of multivariate kernel density estimators with unconstrained bandwidth matrices.” Journal of Computational and Graphical Statistics, 26(2), 459–462.

See also

Author

RaphaelS1

Super classes

mlr3::Learner -> mlr3proba::LearnerDens -> LearnerDensKDEks

Methods

Inherited methods


Method new()

Creates a new instance of this R6 class.

Usage


Method clone()

The objects of this class are cloneable with this method.

Usage

LearnerDensKDEks$clone(deep = FALSE)

Arguments

deep

Whether to make a deep clone.

Examples

# Define the Learner
learner = mlr3::lrn("dens.kde_ks")
print(learner)
#> <LearnerDensKDEks:dens.kde_ks>: Kernel Density Estimator
#> * Model: -
#> * Parameters: list()
#> * Packages: mlr3, mlr3proba, mlr3extralearners, ks
#> * Predict Types:  [pdf]
#> * Feature Types: integer, numeric
#> * Properties: -

# Define a Task
task = mlr3::tsk("faithful")

# Create train and test set
ids = mlr3::partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)
#> ksKDE() 


# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()
#> dens.logloss 
#>    0.9991155