Density Mixed Data Kernel Learner
mlr_learners_dens.mixed.RdDensity estimator for discrete and continuous variables.
Calls np::npudens() from np.
Meta Information
Task type: “dens”
Predict Types: “pdf”
Feature Types: “integer”, “numeric”
Required Packages: mlr3, mlr3proba, mlr3extralearners, np
Parameters
| Id | Type | Default | Levels | Range |
| bws | untyped | - | - | |
| ckertype | character | gaussian | gaussian, epanechnikov, uniform | - |
| bwscaling | logical | FALSE | TRUE, FALSE | - |
| bwmethod | character | cv.ml | cv.ml, cv.ls, normal-reference | - |
| bwtype | character | fixed | fixed, generalized_nn, adaptive_nn | - |
| bandwidth.compute | logical | FALSE | TRUE, FALSE | - |
| ckerorder | integer | 2 | \([2, 8]\) | |
| remin | logical | TRUE | TRUE, FALSE | - |
| itmax | integer | 10000 | \([1, \infty)\) | |
| nmulti | integer | - | \([1, \infty)\) | |
| ftol | numeric | 1.490116e-07 | \((-\infty, \infty)\) | |
| tol | numeric | 0.0001490116 | \((-\infty, \infty)\) | |
| small | numeric | 1.490116e-05 | \((-\infty, \infty)\) | |
| lbc.dir | numeric | 0.5 | \((-\infty, \infty)\) | |
| dfc.dir | numeric | 0.5 | \((-\infty, \infty)\) | |
| cfac.dir | untyped | 2.5 * (3 - sqrt(5)) | - | |
| initc.dir | numeric | 1 | \((-\infty, \infty)\) | |
| lbd.dir | numeric | 0.1 | \((-\infty, \infty)\) | |
| hbd.dir | numeric | 1 | \((-\infty, \infty)\) | |
| dfac.dir | untyped | 0.25 * (3 - sqrt(5)) | - | |
| initd.dir | numeric | 1 | \((-\infty, \infty)\) | |
| lbc.init | numeric | 0.1 | \((-\infty, \infty)\) | |
| hbc.init | numeric | 2 | \((-\infty, \infty)\) | |
| cfac.init | numeric | 0.5 | \((-\infty, \infty)\) | |
| lbd.init | numeric | 0.1 | \((-\infty, \infty)\) | |
| hbd.init | numeric | 0.9 | \((-\infty, \infty)\) | |
| dfac.init | numeric | 0.37 | \((-\infty, \infty)\) | |
| ukertype | character | - | aitchisonaitken, liracine | - |
| okertype | character | - | wangvanryzin, liracine | - |
References
Li, Qi, Racine, Jeff (2003). “Nonparametric estimation of distributions with categorical and continuous data.” journal of multivariate analysis, 86(2), 266–292.
See also
as.data.table(mlr_learners)for a table of available Learners in the running session (depending on the loaded packages).Chapter in the mlr3book: https://mlr3book.mlr-org.com/basics.html#learners
mlr3learners for a selection of recommended learners.
mlr3cluster for unsupervised clustering learners.
mlr3pipelines to combine learners with pre- and postprocessing steps.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
Super classes
mlr3::Learner -> mlr3proba::LearnerDens -> LearnerDensMixed
Examples
# Define the Learner
learner = mlr3::lrn("dens.mixed")
print(learner)
#>
#> ── <LearnerDensMixed> (dens.mixed): Kernel Density Estimator ───────────────────
#> • Model: -
#> • Parameters: list()
#> • Packages: mlr3, mlr3proba, mlr3extralearners, and np
#> • Predict Types: [pdf]
#> • Feature Types: integer and numeric
#> • Encapsulation: none (fallback: -)
#> • Properties:
#> • Other settings: use_weights = 'error'
# Define a Task
task = mlr3::tsk("faithful")
# Create train and test set
ids = mlr3::partition(task)
# Train the learner on the training ids
learner$train(task, row_ids = ids$train)
print(learner$model)
#> MixedKDE_gaussian()
# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)
#>
Multistart 1 of 1 |
Multistart 1 of 1 |
Multistart 1 of 1 |
Multistart 1 of 1 /
Multistart 1 of 1 |
Multistart 1 of 1 |
# Score the predictions
predictions$score()
#> dens.logloss
#> 0.9930027