Gradient Boosted Decision Trees Regression Learner
mlr_learners_regr.catboost.Rd
Gradient boosting algorithm that also supports categorical data.
Calls catboost::catboost.train()
from package 'catboost'.
Meta Information
Task type: “regr”
Predict Types: “response”
Feature Types: “numeric”, “factor”, “ordered”
Required Packages: mlr3, mlr3extralearners, catboost
Parameters
Id | Type | Default | Levels | Range |
loss_function | character | RMSE | MAE, MAPE, Poisson, Quantile, RMSE, LogLinQuantile, Lq, Huber, Expectile, Tweedie | - |
learning_rate | numeric | 0.03 | \([0.001, 1]\) | |
random_seed | integer | 0 | \([0, \infty)\) | |
l2_leaf_reg | numeric | 3 | \([0, \infty)\) | |
bootstrap_type | character | - | Bayesian, Bernoulli, MVS, Poisson, No | - |
bagging_temperature | numeric | 1 | \([0, \infty)\) | |
subsample | numeric | - | \([0, 1]\) | |
sampling_frequency | character | PerTreeLevel | PerTree, PerTreeLevel | - |
sampling_unit | character | Object | Object, Group | - |
mvs_reg | numeric | - | \([0, \infty)\) | |
random_strength | numeric | 1 | \([0, \infty)\) | |
depth | integer | 6 | \([1, 16]\) | |
grow_policy | character | SymmetricTree | SymmetricTree, Depthwise, Lossguide | - |
min_data_in_leaf | integer | 1 | \([1, \infty)\) | |
max_leaves | integer | 31 | \([1, \infty)\) | |
has_time | logical | FALSE | TRUE, FALSE | - |
rsm | numeric | 1 | \([0.001, 1]\) | |
nan_mode | character | Min | Min, Max | - |
fold_permutation_block | integer | - | \([1, 256]\) | |
leaf_estimation_method | character | - | Newton, Gradient, Exact | - |
leaf_estimation_iterations | integer | - | \([1, \infty)\) | |
leaf_estimation_backtracking | character | AnyImprovement | No, AnyImprovement, Armijo | - |
fold_len_multiplier | numeric | 2 | \([1.001, \infty)\) | |
approx_on_full_history | logical | TRUE | TRUE, FALSE | - |
boosting_type | character | - | Ordered, Plain | - |
boost_from_average | logical | - | TRUE, FALSE | - |
langevin | logical | FALSE | TRUE, FALSE | - |
diffusion_temperature | numeric | 10000 | \([0, \infty)\) | |
score_function | character | Cosine | Cosine, L2, NewtonCosine, NewtonL2 | - |
monotone_constraints | untyped | - | - | |
feature_weights | untyped | - | - | |
first_feature_use_penalties | untyped | - | - | |
penalties_coefficient | numeric | 1 | \([0, \infty)\) | |
per_object_feature_penalties | untyped | - | - | |
model_shrink_rate | numeric | - | \((-\infty, \infty)\) | |
model_shrink_mode | character | - | Constant, Decreasing | - |
target_border | numeric | - | \((-\infty, \infty)\) | |
border_count | integer | - | \([1, 65535]\) | |
feature_border_type | character | GreedyLogSum | Median, Uniform, UniformAndQuantiles, MaxLogSum, MinEntropy, GreedyLogSum | - |
per_float_feature_quantization | untyped | - | - | |
thread_count | integer | 1 | \([-1, \infty)\) | |
task_type | character | CPU | CPU, GPU | - |
devices | untyped | - | - | |
logging_level | character | Silent | Silent, Verbose, Info, Debug | - |
metric_period | integer | 1 | \([1, \infty)\) | |
train_dir | untyped | "catboost_info" | - | |
model_size_reg | numeric | 0.5 | \([0, 1]\) | |
allow_writing_files | logical | FALSE | TRUE, FALSE | - |
save_snapshot | logical | FALSE | TRUE, FALSE | - |
snapshot_file | untyped | - | - | |
snapshot_interval | integer | 600 | \([1, \infty)\) | |
simple_ctr | untyped | - | - | |
combinations_ctr | untyped | - | - | |
ctr_target_border_count | integer | - | \([1, 255]\) | |
counter_calc_method | character | Full | SkipTest, Full | - |
max_ctr_complexity | integer | - | \([1, \infty)\) | |
ctr_leaf_count_limit | integer | - | \([1, \infty)\) | |
store_all_simple_ctr | logical | FALSE | TRUE, FALSE | - |
final_ctr_computation_mode | character | Default | Default, Skip | - |
verbose | logical | FALSE | TRUE, FALSE | - |
ntree_start | integer | 0 | \([0, \infty)\) | |
ntree_end | integer | 0 | \([0, \infty)\) | |
early_stopping_rounds | integer | - | \([1, \infty)\) | |
eval_metric | untyped | - | - | |
use_best_model | logical | - | TRUE, FALSE | - |
iterations | integer | 1000 | \([1, \infty)\) |
Initial parameter values
logging_level
:Actual default: "Verbose"
Adjusted default: "Silent"
Reason for change: consistent with other mlr3 learners
thread_count
:Actual default: -1
Adjusted default: 1
Reason for change: consistent with other mlr3 learners
allow_writing_files
:Actual default: TRUE
Adjusted default: FALSE
Reason for change: consistent with other mlr3 learners
save_snapshot
:Actual default: TRUE
Adjusted default: FALSE
Reason for change: consistent with other mlr3 learners
Early stopping
Early stopping can be used to find the optimal number of boosting rounds.
Set early_stopping_rounds
to an integer value to monitor the performance of the model on the validation set while training.
For information on how to configure the validation set, see the Validation section of mlr3::Learner
.
References
Dorogush, Veronika A, Ershov, Vasily, Gulin, Andrey (2018). “CatBoost: gradient boosting with categorical features support.” arXiv preprint arXiv:1810.11363.
See also
as.data.table(mlr_learners)
for a table of available Learners in the running session (depending on the loaded packages).Chapter in the mlr3book: https://mlr3book.mlr-org.com/basics.html#learners
mlr3learners for a selection of recommended learners.
mlr3cluster for unsupervised clustering learners.
mlr3pipelines to combine learners with pre- and postprocessing steps.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
Super classes
mlr3::Learner
-> mlr3::LearnerRegr
-> LearnerRegrCatboost
Active bindings
internal_valid_scores
The last observation of the validation scores for all metrics. Extracted from
model$evaluation_log
internal_tuned_values
Returns the early stopped iterations if
early_stopping_rounds
was set during training.validate
How to construct the internal validation data. This parameter can be either
NULL
, a ratio,"test"
, or"predefined"
.
Methods
Method importance()
The importance scores are calculated using
catboost.get_feature_importance
,
setting type = "FeatureImportance"
, returned for 'all'.
Returns
Named numeric()
.
Examples
# Define the Learner
learner = mlr3::lrn("regr.catboost")
print(learner)
#> <LearnerRegrCatboost:regr.catboost>: Gradient Boosting
#> * Model: -
#> * Parameters: loss_function=RMSE, thread_count=1, logging_level=Silent,
#> allow_writing_files=FALSE, save_snapshot=FALSE
#> * Validate: NULL
#> * Packages: mlr3, mlr3extralearners, catboost
#> * Predict Types: [response]
#> * Feature Types: numeric, factor, ordered
#> * Properties: importance, internal_tuning, missings, validation,
#> weights
# Define a Task
task = mlr3::tsk("mtcars")
# Create train and test set
ids = mlr3::partition(task)
# Train the learner on the training ids
learner$train(task, row_ids = ids$train)
print(learner$model)
#> CatBoost model (1000 trees)
#> Loss function: RMSE
#> Fit to 10 feature(s)
print(learner$importance())
#> wt disp carb cyl gear drat hp am
#> 18.583712 16.837747 16.664485 10.586282 8.207720 6.906192 6.490526 5.371991
#> qsec vs
#> 5.176267 5.175078
# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)
# Score the predictions
predictions$score()
#> regr.mse
#> 4.818584