Skip to contents

Regression Partition Tree where a significance test is used to determine the univariate splits. Calls partykit::ctree() from partykit.

Dictionary

This Learner can be instantiated via lrn():

lrn("regr.ctree")

Meta Information

Parameters

IdTypeDefaultLevelsRange
teststatcharacterquadraticquadratic, maximum-
splitstatcharacterquadraticquadratic, maximum-
splittestlogicalFALSETRUE, FALSE-
testtypecharacterBonferroniBonferroni, MonteCarlo, Univariate, Teststatistic-
nmaxuntyped--
alphanumeric0.05\([0, 1]\)
mincriterionnumeric0.95\([0, 1]\)
logmincriterionnumeric-\((-\infty, \infty)\)
minsplitinteger20\([1, \infty)\)
minbucketinteger7\([1, \infty)\)
minprobnumeric0.01\([0, \infty)\)
stumplogicalFALSETRUE, FALSE-
lookaheadlogicalFALSETRUE, FALSE-
MIAlogicalFALSETRUE, FALSE-
maxvarinteger-\([1, \infty)\)
nresampleinteger9999\([1, \infty)\)
tolnumeric-\([0, \infty)\)
maxsurrogateinteger0\([0, \infty)\)
numsurrogatelogicalFALSETRUE, FALSE-
mtryintegerInf\([0, \infty)\)
maxdepthintegerInf\([0, \infty)\)
multiwaylogicalFALSETRUE, FALSE-
splittryinteger2\([0, \infty)\)
intersplitlogicalFALSETRUE, FALSE-
majoritylogicalFALSETRUE, FALSE-
caseweightslogicalFALSETRUE, FALSE-
applyfununtyped--
coresintegerNULL\((-\infty, \infty)\)
saveinfologicalTRUETRUE, FALSE-
updatelogicalFALSETRUE, FALSE-
splitflavourcharacterctreectree, exhaustive-
offsetuntyped--
clusteruntyped--
scoresuntyped--
doFitlogicalTRUETRUE, FALSE-
maxptsinteger25000\((-\infty, \infty)\)
absepsnumeric0.001\([0, \infty)\)
relepsnumeric0\([0, \infty)\)

References

Hothorn T, Zeileis A (2015). “partykit: A Modular Toolkit for Recursive Partytioning in R.” Journal of Machine Learning Research, 16(118), 3905-3909. http://jmlr.org/papers/v16/hothorn15a.html.

Hothorn T, Hornik K, Zeileis A (2006). “Unbiased Recursive Partitioning: A Conditional Inference Framework.” Journal of Computational and Graphical Statistics, 15(3), 651–674. doi:10.1198/106186006x133933 , https://doi.org/10.1198/106186006x133933.

See also

Author

sumny

Super classes

mlr3::Learner -> mlr3::LearnerRegr -> LearnerRegrCTree

Methods

Inherited methods


Method new()

Creates a new instance of this R6 class.

Usage


Method clone()

The objects of this class are cloneable with this method.

Usage

LearnerRegrCTree$clone(deep = FALSE)

Arguments

deep

Whether to make a deep clone.

Examples

# Define the Learner
learner = mlr3::lrn("regr.ctree")
print(learner)
#> <LearnerRegrCTree:regr.ctree>: Conditional Inference Tree
#> * Model: -
#> * Parameters: list()
#> * Packages: mlr3, mlr3extralearners, partykit, sandwich, coin
#> * Predict Types:  [response]
#> * Feature Types: integer, numeric, factor, ordered
#> * Properties: weights

# Define a Task
task = mlr3::tsk("mtcars")

# Create train and test set
ids = mlr3::partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)
#> 
#> Model formula:
#> mpg ~ am + carb + cyl + disp + drat + gear + hp + qsec + vs + 
#>     wt
#> 
#> Fitted party:
#> [1] root
#> |   [2] cyl <= 4: 25.611 (n = 9, err = 146.5)
#> |   [3] cyl > 4: 16.158 (n = 12, err = 42.9)
#> 
#> Number of inner nodes:    1
#> Number of terminal nodes: 2


# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()
#> regr.mse 
#> 20.87574