Skip to contents

Gaussian Processes. Calls RWeka::make_Weka_classifier() from RWeka.

Custom mlr3 parameters

  • output_debug_info:

    • original id: output-debug-info

  • do_not_check_capabilities:

    • original id: do-not-check-capabilities

  • num_decimal_places:

    • original id: num-decimal-places

  • batch_size:

    • original id: batch-size

  • E_poly:

    • original id: E

  • L_poly:

    • original id: L (duplicated L for when K is set to PolyKernel)

  • C_poly:

    • original id: C

  • Reason for change: This learner contains changed ids of the following control arguments since their ids contain irregular pattern

  • output-debug-info for kernel parameter removed:

    • enables debugging output (if available) to be printed

  • Reason for change: The parameter is removed because it's unclear how to actually use it.

Dictionary

This Learner can be instantiated via lrn():

lrn("regr.gaussian_processes")

Meta Information

  • Task type: “regr”

  • Predict Types: “response”

  • Feature Types: “logical”, “integer”, “numeric”, “factor”, “ordered”

  • Required Packages: mlr3, RWeka

Parameters

IdTypeDefaultLevelsRange
subsetuntyped--
na.actionuntyped--
Lnumeric1\((-\infty, \infty)\)
Ncharacter00, 1, 2-
KcharactersupportVector.PolyKernelsupportVector.NormalizedPolyKernel, supportVector.PolyKernel, supportVector.Puk, supportVector.RBFKernel, supportVector.StringKernel-
Sinteger1\((-\infty, \infty)\)
E_polynumeric1\((-\infty, \infty)\)
L_polylogicalFALSETRUE, FALSE-
C_polyinteger250007\((-\infty, \infty)\)
output_debug_infologicalFALSETRUE, FALSE-
do_not_check_capabilitieslogicalFALSETRUE, FALSE-
num_decimal_placesinteger2\([1, \infty)\)
batch_sizeinteger100\([1, \infty)\)
optionsuntypedNULL-

References

Mackay DJ (1998). “Introduction to Gaussian Processes.”

See also

Author

damirpolat

Super classes

mlr3::Learner -> mlr3::LearnerRegr -> LearnerRegrGaussianProcesses

Methods

Inherited methods


Method new()

Creates a new instance of this R6 class.


Method clone()

The objects of this class are cloneable with this method.

Usage

LearnerRegrGaussianProcesses$clone(deep = FALSE)

Arguments

deep

Whether to make a deep clone.

Examples

# Define the Learner
learner = mlr3::lrn("regr.gaussian_processes")
print(learner)
#> <LearnerRegrGaussianProcesses:regr.gaussian_processes>: Gaussian Processes
#> * Model: -
#> * Parameters: list()
#> * Packages: mlr3, RWeka
#> * Predict Types:  [response]
#> * Feature Types: logical, integer, numeric, factor, ordered
#> * Properties: missings

# Define a Task
task = mlr3::tsk("mtcars")

# Create train and test set
ids = mlr3::partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)
#> Gaussian Processes
#> 
#> Kernel used:
#>   Linear Kernel: K(x,y) = <x,y>
#> 
#> All values shown based on: Normalize training data
#> 
#> Average Target Value : 0.36962552011095695
#> Inverted Covariance Matrix:
#>     Lowest Value = -0.24299281196946104
#>     Highest Value = 0.8614222163511892
#> Inverted Covariance Matrix * Target-value Vector:
#>     Lowest Value = -0.20948739442942674
#>     Highest Value = 0.285677896488293
#>  
#> 


# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()
#> regr.mse 
#> 7.374724