Regression Gradient Boosting Machine Learner
mlr_learners_regr.gbm.Rd
Gradient Boosting Regression Algorithm.
Calls gbm::gbm()
from gbm.
Weights are ignored for quantile prediction.
Meta Information
Task type: “regr”
Predict Types: “response”, “quantiles”
Feature Types: “integer”, “numeric”, “factor”, “ordered”
Required Packages: mlr3, mlr3extralearners, gbm
Parameters
Id | Type | Default | Levels | Range |
distribution | character | gaussian | gaussian, laplace, poisson, tdist | - |
n.trees | integer | 100 | \([1, \infty)\) | |
interaction.depth | integer | 1 | \([1, \infty)\) | |
n.minobsinnode | integer | 10 | \([1, \infty)\) | |
shrinkage | numeric | 0.001 | \([0, \infty)\) | |
bag.fraction | numeric | 0.5 | \([0, 1]\) | |
train.fraction | numeric | 1 | \([0, 1]\) | |
cv.folds | integer | 0 | \((-\infty, \infty)\) | |
keep.data | logical | FALSE | TRUE, FALSE | - |
verbose | logical | FALSE | TRUE, FALSE | - |
n.cores | integer | 1 | \((-\infty, \infty)\) | |
var.monotone | untyped | - | - |
Parameter changes
keep.data
:Actual default: TRUE
Adjusted default: FALSE
Reason for change:
keep.data = FALSE
saves memory during model fitting.
n.cores
:Actual default: NULL
Adjusted default: 1
Reason for change: Suppressing the automatic internal parallelization if
cv.folds
> 0.
References
Friedman, H J (2002). “Stochastic gradient boosting.” Computational statistics & data analysis, 38(4), 367–378.
See also
as.data.table(mlr_learners)
for a table of available Learners in the running session (depending on the loaded packages).Chapter in the mlr3book: https://mlr3book.mlr-org.com/basics.html#learners
mlr3learners for a selection of recommended learners.
mlr3cluster for unsupervised clustering learners.
mlr3pipelines to combine learners with pre- and postprocessing steps.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
Super classes
mlr3::Learner
-> mlr3::LearnerRegr
-> LearnerRegrGBM
Methods
Method importance()
The importance scores are extracted by gbm::relative.influence()
from
the model.
Returns
Named numeric()
.
Examples
# Define the Learner
learner = lrn("regr.gbm")
print(learner)
#> <LearnerRegrGBM:regr.gbm>: Gradient Boosting
#> * Model: -
#> * Parameters: keep.data=FALSE, n.cores=1
#> * Packages: mlr3, mlr3extralearners, gbm
#> * Predict Types: [response], quantiles
#> * Feature Types: integer, numeric, factor, ordered
#> * Properties: importance, missings, weights