Regression Gradient Boosting Machine Learner
Source:R/learner_gbm_regr_gbm.R
mlr_learners_regr.gbm.RdGradient Boosting Regression Algorithm.
Calls gbm::gbm() from gbm.
Weights are ignored for quantile prediction.
Meta Information
Task type: “regr”
Predict Types: “response”, “quantiles”
Feature Types: “integer”, “numeric”, “factor”, “ordered”
Required Packages: mlr3, mlr3extralearners, gbm
Parameters
| Id | Type | Default | Levels | Range |
| distribution | character | gaussian | gaussian, laplace, poisson, tdist | - |
| n.trees | integer | 100 | \([1, \infty)\) | |
| interaction.depth | integer | 1 | \([1, \infty)\) | |
| n.minobsinnode | integer | 10 | \([1, \infty)\) | |
| shrinkage | numeric | 0.001 | \([0, \infty)\) | |
| bag.fraction | numeric | 0.5 | \([0, 1]\) | |
| train.fraction | numeric | 1 | \([0, 1]\) | |
| cv.folds | integer | 0 | \((-\infty, \infty)\) | |
| keep.data | logical | FALSE | TRUE, FALSE | - |
| verbose | logical | FALSE | TRUE, FALSE | - |
| n.cores | integer | 1 | \((-\infty, \infty)\) | |
| var.monotone | untyped | - | - |
Parameter changes
keep.data:Actual default: TRUE
Adjusted default: FALSE
Reason for change:
keep.data = FALSEsaves memory during model fitting.
n.cores:Actual default: NULL
Adjusted default: 1
Reason for change: Suppressing the automatic internal parallelization if
cv.folds> 0.
References
Friedman, H J (2002). “Stochastic gradient boosting.” Computational statistics & data analysis, 38(4), 367–378.
See also
as.data.table(mlr_learners)for a table of available Learners in the running session (depending on the loaded packages).Chapter in the mlr3book: https://mlr3book.mlr-org.com/basics.html#learners
mlr3learners for a selection of recommended learners.
mlr3cluster for unsupervised clustering learners.
mlr3pipelines to combine learners with pre- and postprocessing steps.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
Super classes
mlr3::Learner -> mlr3::LearnerRegr -> LearnerRegrGBM
Methods
Inherited methods
mlr3::Learner$base_learner()mlr3::Learner$configure()mlr3::Learner$encapsulate()mlr3::Learner$format()mlr3::Learner$help()mlr3::Learner$predict()mlr3::Learner$predict_newdata()mlr3::Learner$print()mlr3::Learner$reset()mlr3::Learner$selected_features()mlr3::Learner$train()mlr3::LearnerRegr$predict_newdata_fast()
Method importance()
The importance scores are extracted by gbm::relative.influence() from
the model.
Returns
Named numeric().
Examples
# Define the Learner
learner = lrn("regr.gbm")
print(learner)
#>
#> ── <LearnerRegrGBM> (regr.gbm): Gradient Boosting ──────────────────────────────
#> • Model: -
#> • Parameters: keep.data=FALSE, n.cores=1
#> • Packages: mlr3, mlr3extralearners, and gbm
#> • Predict Types: [response] and quantiles
#> • Feature Types: integer, numeric, factor, and ordered
#> • Encapsulation: none (fallback: -)
#> • Properties: importance, missings, and weights
#> • Other settings: use_weights = 'use'