Regression KStar Learner
mlr_learners_regr.kstar.Rd
Instance-based regressor which differs from other instance-based learners in that
it uses an entropy-based distance function.
Calls RWeka::make_Weka_classifier()
from RWeka.
Custom mlr3 parameters
output_debug_info
:original id: output-debug-info
do_not_check_capabilities
:original id: do-not-check-capabilities
num_decimal_places
:original id: num-decimal-places
batch_size
:original id: batch-size
Reason for change: This learner contains changed ids of the following control arguments since their ids contain irregular pattern
Parameters
Id | Type | Default | Levels | Range |
subset | untyped | - | - | |
na.action | untyped | - | - | |
B | integer | 20 | \((-\infty, \infty)\) | |
E | logical | - | TRUE, FALSE | - |
M | character | a | a, d, m, n | - |
output_debug_info | logical | FALSE | TRUE, FALSE | - |
do_not_check_capabilities | logical | FALSE | TRUE, FALSE | - |
num_decimal_places | integer | 2 | \([1, \infty)\) | |
batch_size | integer | 100 | \([1, \infty)\) | |
options | untyped | NULL | - |
References
Cleary JG, Trigg LE (1995). “K*: An Instance-based Learner Using an Entropic Distance Measure.” In 12th International Conference on Machine Learning, 108-114.
See also
as.data.table(mlr_learners)
for a table of available Learners in the running session (depending on the loaded packages).Chapter in the mlr3book: https://mlr3book.mlr-org.com/basics.html#learners
mlr3learners for a selection of recommended learners.
mlr3cluster for unsupervised clustering learners.
mlr3pipelines to combine learners with pre- and postprocessing steps.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
Super classes
mlr3::Learner
-> mlr3::LearnerRegr
-> LearnerRegrKStar
Examples
# Define the Learner
learner = mlr3::lrn("regr.kstar")
print(learner)
#> <LearnerRegrKStar:regr.kstar>: KStar
#> * Model: -
#> * Parameters: list()
#> * Packages: mlr3, RWeka
#> * Predict Types: [response]
#> * Feature Types: logical, integer, numeric, factor, ordered
#> * Properties: -
# Define a Task
task = mlr3::tsk("mtcars")
# Create train and test set
ids = mlr3::partition(task)
# Train the learner on the training ids
learner$train(task, row_ids = ids$train)
print(learner$model)
#> KStar Beta Verion (0.1b).
#> Copyright (c) 1995-97 by Len Trigg (trigg@cs.waikato.ac.nz).
#> Java port to Weka by Abdelaziz Mahoui (am14@cs.waikato.ac.nz).
#>
#> KStar options : -B 20 -M a
# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)
# Score the predictions
predictions$score()
#> regr.mse
#> 5.906752