Skip to contents

Gradient boosting algorithm. Calls lightgbm::lightgbm() from lightgbm. The list of parameters can be found here and in the documentation of lightgbm::lgb.train().

Dictionary

This Learner can be instantiated via lrn():

lrn("regr.lightgbm")

Meta Information

  • Task type: “regr”

  • Predict Types: “response”

  • Feature Types: “logical”, “integer”, “numeric”, “factor”

  • Required Packages: mlr3, mlr3extralearners, lightgbm

Parameters

IdTypeDefaultLevelsRange
objectivecharacterregressionregression, regression_l1, huber, fair, poisson, quantile, mape, gamma, tweedie-
evaluntyped--
verboseinteger1\((-\infty, \infty)\)
recordlogicalTRUETRUE, FALSE-
eval_freqinteger1\([1, \infty)\)
callbacksuntyped--
reset_datalogicalFALSETRUE, FALSE-
boostingcharactergbdtgbdt, rf, dart, goss-
linear_treelogicalFALSETRUE, FALSE-
learning_ratenumeric0.1\([0, \infty)\)
num_leavesinteger31\([1, 131072]\)
tree_learnercharacterserialserial, feature, data, voting-
num_threadsinteger0\([0, \infty)\)
device_typecharactercpucpu, gpu-
seedinteger-\((-\infty, \infty)\)
deterministiclogicalFALSETRUE, FALSE-
data_sample_strategycharacterbaggingbagging, goss-
force_col_wiselogicalFALSETRUE, FALSE-
force_row_wiselogicalFALSETRUE, FALSE-
histogram_pool_sizeinteger-1\((-\infty, \infty)\)
max_depthinteger-1\((-\infty, \infty)\)
min_data_in_leafinteger20\([0, \infty)\)
min_sum_hessian_in_leafnumeric0.001\([0, \infty)\)
bagging_fractionnumeric1\([0, 1]\)
bagging_freqinteger0\([0, \infty)\)
bagging_seedinteger3\((-\infty, \infty)\)
bagging_by_querylogicalFALSETRUE, FALSE-
feature_fractionnumeric1\([0, 1]\)
feature_fraction_bynodenumeric1\([0, 1]\)
feature_fraction_seedinteger2\((-\infty, \infty)\)
extra_treeslogicalFALSETRUE, FALSE-
extra_seedinteger6\((-\infty, \infty)\)
max_delta_stepnumeric0\((-\infty, \infty)\)
lambda_l1numeric0\([0, \infty)\)
lambda_l2numeric0\([0, \infty)\)
linear_lambdanumeric0\([0, \infty)\)
min_gain_to_splitnumeric0\([0, \infty)\)
drop_ratenumeric0.1\([0, 1]\)
max_dropinteger50\((-\infty, \infty)\)
skip_dropnumeric0.5\([0, 1]\)
xgboost_dart_modelogicalFALSETRUE, FALSE-
uniform_droplogicalFALSETRUE, FALSE-
drop_seedinteger4\((-\infty, \infty)\)
top_ratenumeric0.2\([0, 1]\)
other_ratenumeric0.1\([0, 1]\)
min_data_per_groupinteger100\([1, \infty)\)
max_cat_thresholdinteger32\([1, \infty)\)
cat_l2numeric10\([0, \infty)\)
cat_smoothnumeric10\([0, \infty)\)
max_cat_to_onehotinteger4\([1, \infty)\)
top_kinteger20\([1, \infty)\)
monotone_constraintsuntypedNULL-
monotone_constraints_methodcharacterbasicbasic, intermediate, advanced-
monotone_penaltynumeric0\([0, \infty)\)
feature_contriuntypedNULL-
forcedsplits_filenameuntyped""-
refit_decay_ratenumeric0.9\([0, 1]\)
cegb_tradeoffnumeric1\([0, \infty)\)
cegb_penalty_splitnumeric0\([0, \infty)\)
cegb_penalty_feature_lazyuntyped--
cegb_penalty_feature_coupleduntyped--
path_smoothnumeric0\([0, \infty)\)
interaction_constraintsuntyped--
use_quantized_gradlogicalTRUETRUE, FALSE-
num_grad_quant_binsinteger4\((-\infty, \infty)\)
quant_train_renew_leaflogicalFALSETRUE, FALSE-
stochastic_roundinglogicalTRUETRUE, FALSE-
serializablelogicalTRUETRUE, FALSE-
max_bininteger255\([2, \infty)\)
max_bin_by_featureuntypedNULL-
min_data_in_bininteger3\([1, \infty)\)
bin_construct_sample_cntinteger200000\([1, \infty)\)
data_random_seedinteger1\((-\infty, \infty)\)
is_enable_sparselogicalTRUETRUE, FALSE-
enable_bundlelogicalTRUETRUE, FALSE-
use_missinglogicalTRUETRUE, FALSE-
zero_as_missinglogicalFALSETRUE, FALSE-
feature_pre_filterlogicalTRUETRUE, FALSE-
pre_partitionlogicalFALSETRUE, FALSE-
two_roundlogicalFALSETRUE, FALSE-
forcedbins_filenameuntyped""-
boost_from_averagelogicalTRUETRUE, FALSE-
reg_sqrtlogicalFALSETRUE, FALSE-
alphanumeric0.9\([0, \infty)\)
fair_cnumeric1\([0, \infty)\)
poisson_max_delta_stepnumeric0.7\([0, \infty)\)
tweedie_variance_powernumeric1.5\([1, 2]\)
metric_freqinteger1\([1, \infty)\)
num_machinesinteger1\([1, \infty)\)
local_listen_portinteger12400\([1, \infty)\)
time_outinteger120\([1, \infty)\)
machinesuntyped""-
gpu_platform_idinteger-1\((-\infty, \infty)\)
gpu_device_idinteger-1\((-\infty, \infty)\)
gpu_use_dplogicalFALSETRUE, FALSE-
num_gpuinteger1\([1, \infty)\)
start_iteration_predictinteger0\((-\infty, \infty)\)
num_iteration_predictinteger-1\((-\infty, \infty)\)
pred_early_stoplogicalFALSETRUE, FALSE-
pred_early_stop_freqinteger10\((-\infty, \infty)\)
pred_early_stop_marginnumeric10\((-\infty, \infty)\)
num_iterationsinteger100\([1, \infty)\)
early_stopping_roundsinteger-\([1, \infty)\)
early_stopping_min_deltanumeric-\([0, \infty)\)
first_metric_onlylogicalFALSETRUE, FALSE-

Initial parameter values

  • num_threads:

    • Actual default: 0L

    • Initital value: 1L

    • Reason for change: Prevents accidental conflicts with future.

  • verbose:

    • Actual default: 1L

    • Initial value: -1L

    • Reason for change: Prevents accidental conflicts with mlr messaging system.

Early Stopping and Validation

Early stopping can be used to find the optimal number of boosting rounds. Set early_stopping_rounds to an integer value to monitor the performance of the model on the validation set while training. For information on how to configure the validation set, see the Validation section of mlr3::Learner. The internal validation measure can be set the eval parameter which should be a list of mlr3::Measures, functions, or strings for the internal lightgbm measures. If first_metric_only = FALSE (default), the learner stops when any metric fails to improve.

References

Ke, Guolin, Meng, Qi, Finley, Thomas, Wang, Taifeng, Chen, Wei, Ma, Weidong, Ye, Qiwei, Liu, Tie-Yan (2017). “Lightgbm: A highly efficient gradient boosting decision tree.” Advances in neural information processing systems, 30.

See also

Author

kapsner

Super classes

mlr3::Learner -> mlr3::LearnerRegr -> LearnerRegrLightGBM

Active bindings

internal_valid_scores

The last observation of the validation scores for all metrics. Extracted from model$evaluation_log

internal_tuned_values

Returns the early stopped iterations if early_stopping_rounds was set during training.

validate

How to construct the internal validation data. This parameter can be either NULL, a ratio, "test", or "predefined".

Methods

Inherited methods


Method new()

Creates a new instance of this R6 class.

Usage


Method importance()

The importance scores are extracted from lbg.importance.

Usage

LearnerRegrLightGBM$importance()

Returns

Named numeric().


Method clone()

The objects of this class are cloneable with this method.

Usage

LearnerRegrLightGBM$clone(deep = FALSE)

Arguments

deep

Whether to make a deep clone.

Examples

# Define the Learner
learner = mlr3::lrn("regr.lightgbm")
print(learner)
#> <LearnerRegrLightGBM:regr.lightgbm>: Gradient Boosting
#> * Model: -
#> * Parameters: objective=regression, verbose=-1, num_threads=1
#> * Validate: NULL
#> * Packages: mlr3, mlr3extralearners, lightgbm
#> * Predict Types:  [response]
#> * Feature Types: logical, integer, numeric, factor
#> * Properties: hotstart_forward, importance, internal_tuning, missings,
#>   validation, weights

# Define a Task
task = mlr3::tsk("mtcars")

# Create train and test set
ids = mlr3::partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)
#> LightGBM Model (1 tree)
#> Objective: regression
#> Fitted to dataset with 10 columns
print(learner$importance())
#>   am carb  cyl disp drat gear   hp qsec   vs   wt 
#>    0    0    0    0    0    0    0    0    0    0 

# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()
#> regr.mse 
#> 22.96158