Skip to contents

Linear Regression learner that uses the Akaike criterion for model selection and is able to deal with weighted instances. Calls RWeka::LinearRegression() RWeka.

Custom mlr3 parameters

  • output_debug_info:

    • original id: output-debug-info

  • do_not_check_capabilities:

    • original id: do-not-check-capabilities

  • num_decimal_places:

    • original id: num-decimal-places

  • batch_size:

    • original id: batch-size

  • additional_stats:

    • original id: additional-stats

  • use_qr:

    • original id: use-qr

  • Reason for change: This learner contains changed ids of the following control arguments since their ids contain irregular pattern

Dictionary

This Learner can be instantiated via lrn():

lrn("regr.linear_regression")

Meta Information

  • Task type: “regr”

  • Predict Types: “response”

  • Feature Types: “logical”, “integer”, “numeric”, “factor”, “ordered”

  • Required Packages: mlr3, RWeka

Parameters

IdTypeDefaultLevelsRange
subsetuntyped--
na.actionuntyped--
Scharacter00, 1, 2-
ClogicalFALSETRUE, FALSE-
Rnumeric1e-08\((-\infty, \infty)\)
minimallogicalFALSETRUE, FALSE-
additional_statslogicalFALSETRUE, FALSE-
use_qrlogicalFALSETRUE, FALSE-
output_debug_infologicalFALSETRUE, FALSE-
do_not_check_capabilitieslogicalFALSETRUE, FALSE-
num_decimal_placesinteger2\([1, \infty)\)
batch_sizeinteger100\([1, \infty)\)
optionsuntypedNULL-

See also

Author

damirpolat

Super classes

mlr3::Learner -> mlr3::LearnerRegr -> LearnerRegrLinearRegression

Methods

Inherited methods


Method new()

Creates a new instance of this R6 class.


Method clone()

The objects of this class are cloneable with this method.

Usage

LearnerRegrLinearRegression$clone(deep = FALSE)

Arguments

deep

Whether to make a deep clone.

Examples

# Define the Learner
learner = mlr3::lrn("regr.linear_regression")
print(learner)
#> <LearnerRegrLinearRegression:regr.linear_regression>: Linear Regression
#> * Model: -
#> * Parameters: list()
#> * Packages: mlr3, RWeka
#> * Predict Types:  [response]
#> * Feature Types: logical, integer, numeric, factor, ordered
#> * Properties: missings

# Define a Task
task = mlr3::tsk("mtcars")

# Create train and test set
ids = mlr3::partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)
#> 
#> Linear Regression Model
#> 
#> mpg =
#> 
#>       3.6786 * am +
#>       1.4631 * carb +
#>       0.0462 * disp +
#>      -0.0591 * hp +
#>       1.557  * qsec +
#>      -8.1874 * wt +
#>      10.5602


# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()
#> regr.mse 
#> 13.91156