Regression Linear Regression Learner From Weka
Source:R/learner_RWeka_regr_linear_regression.R
      mlr_learners_regr.linear_regression.RdLinear Regression learner that uses the Akaike criterion for model selection and
is able to deal with weighted instances.
Calls RWeka::LinearRegression() RWeka.
Custom mlr3 parameters
- output_debug_info:- original id: output-debug-info 
 
- do_not_check_capabilities:- original id: do-not-check-capabilities 
 
- num_decimal_places:- original id: num-decimal-places 
 
- batch_size:- original id: batch-size 
 
- additional_stats:- original id: additional-stats 
 
- use_qr:- original id: use-qr 
 
- Reason for change: This learner contains changed ids of the following control arguments since their ids contain irregular pattern 
Parameters
| Id | Type | Default | Levels | Range | 
| subset | untyped | - | - | |
| na.action | untyped | - | - | |
| S | character | 0 | 0, 1, 2 | - | 
| C | logical | FALSE | TRUE, FALSE | - | 
| R | numeric | 1e-08 | \((-\infty, \infty)\) | |
| minimal | logical | FALSE | TRUE, FALSE | - | 
| additional_stats | logical | FALSE | TRUE, FALSE | - | 
| use_qr | logical | FALSE | TRUE, FALSE | - | 
| output_debug_info | logical | FALSE | TRUE, FALSE | - | 
| do_not_check_capabilities | logical | FALSE | TRUE, FALSE | - | 
| num_decimal_places | integer | 2 | \([1, \infty)\) | |
| batch_size | integer | 100 | \([1, \infty)\) | |
| options | untyped | NULL | - | 
See also
- as.data.table(mlr_learners)for a table of available Learners in the running session (depending on the loaded packages).
- Chapter in the mlr3book: https://mlr3book.mlr-org.com/basics.html#learners 
- mlr3learners for a selection of recommended learners. 
- mlr3cluster for unsupervised clustering learners. 
- mlr3pipelines to combine learners with pre- and postprocessing steps. 
- mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces. 
Super classes
mlr3::Learner -> mlr3::LearnerRegr -> LearnerRegrLinearRegression
Methods
Inherited methods
mlr3::Learner$base_learner()mlr3::Learner$configure()mlr3::Learner$encapsulate()mlr3::Learner$format()mlr3::Learner$help()mlr3::Learner$predict()mlr3::Learner$predict_newdata()mlr3::Learner$print()mlr3::Learner$reset()mlr3::Learner$selected_features()mlr3::Learner$train()mlr3::LearnerRegr$predict_newdata_fast()
Method marshal()
Marshal the learner's model.
Arguments
- ...
- (any) 
 Additional arguments passed to- mlr3::marshal_model().
Method unmarshal()
Unmarshal the learner's model.
Arguments
- ...
- (any) 
 Additional arguments passed to- mlr3::unmarshal_model().
Examples
# Define the Learner
learner = lrn("regr.linear_regression")
print(learner)
#> 
#> ── <LearnerRegrLinearRegression> (regr.linear_regression): Linear Regression ───
#> • Model: -
#> • Parameters: list()
#> • Packages: mlr3 and RWeka
#> • Predict Types: [response]
#> • Feature Types: logical, integer, numeric, factor, and ordered
#> • Encapsulation: none (fallback: -)
#> • Properties: marshal and missings
#> • Other settings: use_weights = 'error'
# Define a Task
task = tsk("mtcars")
# Create train and test set
ids = partition(task)
# Train the learner on the training ids
learner$train(task, row_ids = ids$train)
print(learner$model)
#> 
#> Linear Regression Model
#> 
#> mpg =
#> 
#>       6.2673 * am +
#>      -0.0419 * hp +
#>       0.9599 * qsec +
#>       7.0244
# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)
# Score the predictions
predictions$score()
#> regr.mse 
#> 14.54337