Regression Mars Learner
mlr_learners_regr.mars.Rd
Multivariate Adaptive Regression Splines.
Calls mda::mars()
from mda.
Meta Information
Task type: “regr”
Predict Types: “response”
Feature Types: “integer”, “numeric”
Required Packages: mlr3, mlr3extralearners, mda
Parameters
Id | Type | Default | Levels | Range |
degree | integer | 1 | \([1, \infty)\) | |
nk | integer | - | \([1, \infty)\) | |
penalty | numeric | 2 | \([0, \infty)\) | |
thresh | numeric | 0.001 | \([0, \infty)\) | |
prune | logical | TRUE | TRUE, FALSE | - |
trace.mars | logical | FALSE | TRUE, FALSE | - |
forward.step | logical | FALSE | TRUE, FALSE | - |
References
Friedman, H J (1991). “Multivariate adaptive regression splines.” The annals of statistics, 19(1), 1–67.
See also
as.data.table(mlr_learners)
for a table of available Learners in the running session (depending on the loaded packages).Chapter in the mlr3book: https://mlr3book.mlr-org.com/basics.html#learners
mlr3learners for a selection of recommended learners.
mlr3cluster for unsupervised clustering learners.
mlr3pipelines to combine learners with pre- and postprocessing steps.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
Super classes
mlr3::Learner
-> mlr3::LearnerRegr
-> LearnerRegrMars
Examples
# Define the Learner
learner = mlr3::lrn("regr.mars")
print(learner)
#> <LearnerRegrMars:regr.mars>: Multivariate Adaptive Regression Splines
#> * Model: -
#> * Parameters: list()
#> * Packages: mlr3, mlr3extralearners, mda
#> * Predict Types: [response]
#> * Feature Types: integer, numeric
#> * Properties: -
# Define a Task
task = mlr3::tsk("mtcars")
# Create train and test set
ids = mlr3::partition(task)
# Train the learner on the training ids
learner$train(task, row_ids = ids$train)
print(learner$model)
#> $call
#> mda::mars(x = x, y = y)
#>
#> $all.terms
#> [1] 1 2 4 6 8 10 12 14 16
#>
#> $selected.terms
#> [1] 1 2 4
#>
#> $penalty
#> [1] 2
#>
#> $degree
#> [1] 1
#>
#> $nk
#> [1] 21
#>
#> $thresh
#> [1] 0.001
#>
#> $gcv
#> [1] 8.209044
#>
#> $factor
#> am carb cyl disp drat gear hp qsec vs wt
#> [1,] 0 0 0 0 0 0 0 0 0 0
#> [2,] 0 0 0 0 0 0 0 0 0 1
#> [3,] 0 0 0 0 0 0 0 0 0 -1
#> [4,] 0 0 0 0 0 0 0 1 0 0
#> [5,] 0 0 0 0 0 0 0 -1 0 0
#> [6,] 1 0 0 0 0 0 0 0 0 0
#> [7,] -1 0 0 0 0 0 0 0 0 0
#> [8,] 0 0 0 0 0 0 1 0 0 0
#> [9,] 0 0 0 0 0 0 -1 0 0 0
#> [10,] 0 0 0 1 0 0 0 0 0 0
#> [11,] 0 0 0 -1 0 0 0 0 0 0
#> [12,] 0 0 0 0 0 1 0 0 0 0
#> [13,] 0 0 0 0 0 -1 0 0 0 0
#> [14,] 0 0 0 0 0 0 0 0 1 0
#> [15,] 0 0 0 0 0 0 0 0 -1 0
#> [16,] 0 1 0 0 0 0 0 0 0 0
#> [17,] 0 -1 0 0 0 0 0 0 0 0
#>
#> $cuts
#> [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
#> [1,] 0 0 0 0.0 0 0 0 0.0 0 0.000
#> [2,] 0 0 0 0.0 0 0 0 0.0 0 1.513
#> [3,] 0 0 0 0.0 0 0 0 0.0 0 1.513
#> [4,] 0 0 0 0.0 0 0 0 14.5 0 0.000
#> [5,] 0 0 0 0.0 0 0 0 14.5 0 0.000
#> [6,] 0 0 0 0.0 0 0 0 0.0 0 0.000
#> [7,] 0 0 0 0.0 0 0 0 0.0 0 0.000
#> [8,] 0 0 0 0.0 0 0 52 0.0 0 0.000
#> [9,] 0 0 0 0.0 0 0 52 0.0 0 0.000
#> [10,] 0 0 0 71.1 0 0 0 0.0 0 0.000
#> [11,] 0 0 0 71.1 0 0 0 0.0 0 0.000
#> [12,] 0 0 0 0.0 0 3 0 0.0 0 0.000
#> [13,] 0 0 0 0.0 0 3 0 0.0 0 0.000
#> [14,] 0 0 0 0.0 0 0 0 0.0 0 0.000
#> [15,] 0 0 0 0.0 0 0 0 0.0 0 0.000
#> [16,] 0 1 0 0.0 0 0 0 0.0 0 0.000
#> [17,] 0 1 0 0.0 0 0 0 0.0 0 0.000
#>
#> $residuals
#> [,1]
#> [1,] -1.0587650
#> [2,] 0.6350331
#> [3,] -1.8158334
#> [4,] -0.7854183
#> [5,] 0.5286116
#> [6,] -1.2960212
#> [7,] 1.9685340
#> [8,] -1.3146103
#> [9,] 3.4148237
#> [10,] 1.1357289
#> [11,] 4.9172545
#> [12,] -3.9576218
#> [13,] -1.7018264
#> [14,] -2.7922620
#> [15,] -1.0384715
#> [16,] 3.7294604
#> [17,] 1.0262595
#> [18,] 1.6988991
#> [19,] -1.7261784
#> [20,] -0.3093485
#> [21,] -1.2582480
#>
#> $fitted.values
#> [,1]
#> [1,] 22.058765
#> [2,] 20.764967
#> [3,] 19.915833
#> [4,] 23.585418
#> [5,] 18.671388
#> [6,] 19.096021
#> [7,] 14.431466
#> [8,] 16.514610
#> [9,] 6.985176
#> [10,] 29.264271
#> [11,] 28.982746
#> [12,] 25.457622
#> [13,] 17.201826
#> [14,] 17.992262
#> [15,] 14.338472
#> [16,] 15.470540
#> [17,] 24.973741
#> [18,] 28.701101
#> [19,] 17.526178
#> [20,] 15.309349
#> [21,] 22.658248
#>
#> $lenb
#> [1] 17
#>
#> $coefficients
#> [,1]
#> [1,] 27.0025695
#> [2,] -5.7190049
#> [3,] 0.7077214
#>
#> $x
#> [,1] [,2] [,3]
#> [1,] 1 1.107 1.96
#> [2,] 1 1.702 4.94
#> [3,] 1 1.947 5.72
#> [4,] 1 1.637 8.40
#> [5,] 1 1.927 3.80
#> [6,] 1 1.927 4.40
#> [7,] 1 2.557 2.90
#> [8,] 1 2.267 3.50
#> [9,] 1 3.911 3.32
#> [10,] 1 0.102 4.02
#> [11,] 1 0.322 5.40
#> [12,] 1 0.952 5.51
#> [13,] 1 2.007 2.37
#> [14,] 1 1.922 2.80
#> [15,] 1 2.327 0.91
#> [16,] 1 2.332 2.55
#> [17,] 1 0.627 2.20
#> [18,] 1 0.000 2.40
#> [19,] 1 1.657 0.00
#> [20,] 1 2.057 0.10
#> [21,] 1 1.267 4.10
#>
#> attr(,"class")
#> [1] "mars"
# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)
# Score the predictions
predictions$score()
#> regr.mse
#> 10.70052