Skip to contents

Multivariate Adaptive Regression Splines. Calls mda::mars() from mda.

Dictionary

This Learner can be instantiated via lrn():

lrn("regr.mars")

Meta Information

  • Task type: “regr”

  • Predict Types: “response”

  • Feature Types: “integer”, “numeric”

  • Required Packages: mlr3, mlr3extralearners, mda

Parameters

IdTypeDefaultLevelsRange
degreeinteger1\([1, \infty)\)
nkinteger-\([1, \infty)\)
penaltynumeric2\([0, \infty)\)
threshnumeric0.001\([0, \infty)\)
prunelogicalTRUETRUE, FALSE-
trace.marslogicalFALSETRUE, FALSE-
forward.steplogicalFALSETRUE, FALSE-

References

Friedman, H J (1991). “Multivariate adaptive regression splines.” The annals of statistics, 19(1), 1–67.

See also

Author

sumny

Super classes

mlr3::Learner -> mlr3::LearnerRegr -> LearnerRegrMars

Methods

Inherited methods


Method new()

Creates a new instance of this R6 class.

Usage


Method clone()

The objects of this class are cloneable with this method.

Usage

LearnerRegrMars$clone(deep = FALSE)

Arguments

deep

Whether to make a deep clone.

Examples

# Define the Learner
learner = lrn("regr.mars")
print(learner)
#> 
#> ── <LearnerRegrMars> (regr.mars): Multivariate Adaptive Regression Splines ─────
#> • Model: -
#> • Parameters: list()
#> • Packages: mlr3, mlr3extralearners, and mda
#> • Predict Types: [response]
#> • Feature Types: integer and numeric
#> • Encapsulation: none (fallback: -)
#> • Properties:
#> • Other settings: use_weights = 'error'

# Define a Task
task = tsk("mtcars")

# Create train and test set
ids = partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)
#> $call
#> mda::mars(x = x, y = y)
#> 
#> $all.terms
#> [1]  1  2  4  6  8 10 12 14
#> 
#> $selected.terms
#> [1]  1  8 12
#> 
#> $penalty
#> [1] 2
#> 
#> $degree
#> [1] 1
#> 
#> $nk
#> [1] 21
#> 
#> $thresh
#> [1] 0.001
#> 
#> $gcv
#> [1] 11.72574
#> 
#> $factor
#>       am carb cyl disp drat gear hp qsec vs wt
#>  [1,]  0    0   0    0    0    0  0    0  0  0
#>  [2,]  0    0   0    1    0    0  0    0  0  0
#>  [3,]  0    0   0   -1    0    0  0    0  0  0
#>  [4,]  0    1   0    0    0    0  0    0  0  0
#>  [5,]  0   -1   0    0    0    0  0    0  0  0
#>  [6,]  1    0   0    0    0    0  0    0  0  0
#>  [7,] -1    0   0    0    0    0  0    0  0  0
#>  [8,]  0    0   0    0    0    0  1    0  0  0
#>  [9,]  0    0   0    0    0    0 -1    0  0  0
#> [10,]  0    0   0    0    1    0  0    0  0  0
#> [11,]  0    0   0    0   -1    0  0    0  0  0
#> [12,]  0    0   0    0    0    0  0    0  0  1
#> [13,]  0    0   0    0    0    0  0    0  0 -1
#> [14,]  0    0   0    0    0    0  0    1  0  0
#> [15,]  0    0   0    0    0    0  0   -1  0  0
#> 
#> $cuts
#>       [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
#>  [1,]    0    0    0  0.0 0.00    0    0  0.0    0 0.000
#>  [2,]    0    0    0 71.1 0.00    0    0  0.0    0 0.000
#>  [3,]    0    0    0 71.1 0.00    0    0  0.0    0 0.000
#>  [4,]    0    1    0  0.0 0.00    0    0  0.0    0 0.000
#>  [5,]    0    1    0  0.0 0.00    0    0  0.0    0 0.000
#>  [6,]    0    0    0  0.0 0.00    0    0  0.0    0 0.000
#>  [7,]    0    0    0  0.0 0.00    0    0  0.0    0 0.000
#>  [8,]    0    0    0  0.0 0.00    0   52  0.0    0 0.000
#>  [9,]    0    0    0  0.0 0.00    0   52  0.0    0 0.000
#> [10,]    0    0    0  0.0 2.76    0    0  0.0    0 0.000
#> [11,]    0    0    0  0.0 2.76    0    0  0.0    0 0.000
#> [12,]    0    0    0  0.0 0.00    0    0  0.0    0 1.615
#> [13,]    0    0    0  0.0 0.00    0    0  0.0    0 1.615
#> [14,]    0    0    0  0.0 0.00    0    0 14.5    0 0.000
#> [15,]    0    0    0  0.0 0.00    0    0 14.5    0 0.000
#> 
#> $residuals
#>              [,1]
#>  [1,] -2.89262248
#>  [2,] -0.62796862
#>  [3,]  0.37273710
#>  [4,] -3.39059956
#>  [5,] -0.39384545
#>  [6,]  0.08156062
#>  [7,] -0.12295904
#>  [8,] -0.87237707
#>  [9,]  0.13377581
#> [10,]  4.87748866
#> [11,]  5.16337098
#> [12,]  0.68485303
#> [13,]  5.47342178
#> [14,] -3.47748954
#> [15,] -4.29508015
#> [16,] -0.54770000
#> [17,]  2.14195527
#> [18,] -0.27251345
#> [19,]  0.72823814
#> [20,] -0.72695716
#> [21,] -2.03728887
#> 
#> $fitted.values
#>            [,1]
#>  [1,] 23.892622
#>  [2,] 22.027969
#>  [3,] 18.327263
#>  [4,] 21.490600
#>  [5,] 14.693845
#>  [6,] 24.318439
#>  [7,] 22.922959
#>  [8,] 11.272377
#>  [9,] 10.266224
#> [10,]  9.822511
#> [11,] 27.236629
#> [12,] 29.715147
#> [13,] 28.426578
#> [14,] 24.977490
#> [15,] 19.495080
#> [16,] 13.847700
#> [17,] 17.058045
#> [18,] 26.272513
#> [19,] 15.071762
#> [20,] 20.426957
#> [21,] 23.437289
#> 
#> $lenb
#> [1] 15
#> 
#> $coefficients
#>             [,1]
#> [1,] 29.71514697
#> [2,] -0.04608592
#> [3,] -3.13387202
#> 
#> $x
#>       [,1] [,2]  [,3]
#>  [1,]    1   58 1.005
#>  [2,]    1   58 1.600
#>  [3,]    1  123 1.825
#>  [4,]    1   53 1.845
#>  [5,]    1  193 1.955
#>  [6,]    1   10 1.575
#>  [7,]    1   43 1.535
#>  [8,]    1  153 3.635
#>  [9,]    1  163 3.809
#> [10,]    1  178 3.730
#> [11,]    1   14 0.585
#> [12,]    1    0 0.000
#> [13,]    1   13 0.220
#> [14,]    1   45 0.850
#> [15,]    1   98 1.820
#> [16,]    1  193 2.225
#> [17,]    1  123 2.230
#> [18,]    1   39 0.525
#> [19,]    1  212 1.555
#> [20,]    1  123 1.155
#> [21,]    1   57 1.165
#> 
#> attr(,"class")
#> [1] "mars"


# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()
#> regr.mse 
#> 6.652599