Regression MultilayerPerceptron Learner
Source:R/learner_RWeka_regr_multilayer_perceptron.R
mlr_learners_regr.multilayer_perceptron.RdRegressor that uses backpropagation to learn a multi-layer perceptron.
Calls RWeka::make_Weka_classifier() from RWeka.
Custom mlr3 parameters
output_debug_info:original id: output-debug-info
do_not_check_capabilities:original id: do-not-check-capabilities
num_decimal_places:original id: num-decimal-places
batch_size:original id: batch-size
Reason for change: This learner contains changed ids of the following control arguments since their ids contain irregular pattern
Gremoved:GUI will be opened
Reason for change: The parameter is removed because we don't want to launch GUI.
Parameters
| Id | Type | Default | Levels | Range |
| subset | untyped | - | - | |
| na.action | untyped | - | - | |
| L | numeric | 0.3 | \([0, 1]\) | |
| M | numeric | 0.2 | \([0, 1]\) | |
| N | integer | 500 | \([1, \infty)\) | |
| V | numeric | 0 | \([0, 100]\) | |
| S | integer | 0 | \([0, \infty)\) | |
| E | integer | 20 | \([1, \infty)\) | |
| A | logical | FALSE | TRUE, FALSE | - |
| B | logical | FALSE | TRUE, FALSE | - |
| H | untyped | "a" | - | |
| C | logical | FALSE | TRUE, FALSE | - |
| I | logical | FALSE | TRUE, FALSE | - |
| R | logical | FALSE | TRUE, FALSE | - |
| D | logical | FALSE | TRUE, FALSE | - |
| output_debug_info | logical | FALSE | TRUE, FALSE | - |
| do_not_check_capabilities | logical | FALSE | TRUE, FALSE | - |
| num_decimal_places | integer | 2 | \([1, \infty)\) | |
| batch_size | integer | 100 | \([1, \infty)\) | |
| options | untyped | NULL | - |
See also
as.data.table(mlr_learners)for a table of available Learners in the running session (depending on the loaded packages).Chapter in the mlr3book: https://mlr3book.mlr-org.com/basics.html#learners
mlr3learners for a selection of recommended learners.
mlr3cluster for unsupervised clustering learners.
mlr3pipelines to combine learners with pre- and postprocessing steps.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
Super classes
mlr3::Learner -> mlr3::LearnerRegr -> LearnerRegrMultilayerPerceptron
Methods
Inherited methods
mlr3::Learner$base_learner()mlr3::Learner$configure()mlr3::Learner$encapsulate()mlr3::Learner$format()mlr3::Learner$help()mlr3::Learner$predict()mlr3::Learner$predict_newdata()mlr3::Learner$print()mlr3::Learner$reset()mlr3::Learner$selected_features()mlr3::Learner$train()mlr3::LearnerRegr$predict_newdata_fast()
Method marshal()
Marshal the learner's model.
Arguments
...(any)
Additional arguments passed tomlr3::marshal_model().
Method unmarshal()
Unmarshal the learner's model.
Arguments
...(any)
Additional arguments passed tomlr3::unmarshal_model().
Examples
# Define the Learner
learner = lrn("regr.multilayer_perceptron")
print(learner)
#>
#> ── <LearnerRegrMultilayerPerceptron> (regr.multilayer_perceptron): MultilayerPer
#> • Model: -
#> • Parameters: list()
#> • Packages: mlr3 and RWeka
#> • Predict Types: [response]
#> • Feature Types: logical, integer, numeric, factor, and ordered
#> • Encapsulation: none (fallback: -)
#> • Properties: marshal and missings
#> • Other settings: use_weights = 'error'
# Define a Task
task = tsk("mtcars")
# Create train and test set
ids = partition(task)
# Train the learner on the training ids
learner$train(task, row_ids = ids$train)
print(learner$model)
#> Linear Node 0
#> Inputs Weights
#> Threshold -1.1239937468979584
#> Node 1 1.3438804509431972
#> Node 2 -1.9875395664749311
#> Node 3 1.282396262550355
#> Node 4 1.5376579369285779
#> Node 5 -0.022266532084605245
#> Sigmoid Node 1
#> Inputs Weights
#> Threshold -1.4464191184970308
#> Attrib am 0.19976439533505938
#> Attrib carb 1.501456713944055
#> Attrib cyl 0.08647323568281667
#> Attrib disp -0.8018960681885398
#> Attrib drat 1.0710210953166655
#> Attrib gear 1.3795346086198317
#> Attrib hp -1.274429090155662
#> Attrib qsec -0.5532851711471265
#> Attrib vs 0.04384966114788466
#> Attrib wt -1.5379399817970922
#> Sigmoid Node 2
#> Inputs Weights
#> Threshold 0.5739165489877553
#> Attrib am 0.6090106953128206
#> Attrib carb 2.047071843996018
#> Attrib cyl -0.37806054335271916
#> Attrib disp 0.5695357820578869
#> Attrib drat 0.9425810791725785
#> Attrib gear -0.1552497530165506
#> Attrib hp 2.4799341031033
#> Attrib qsec -0.8616445390847419
#> Attrib vs 0.9405617132335895
#> Attrib wt 1.0462724228186249
#> Sigmoid Node 3
#> Inputs Weights
#> Threshold -1.3455397960107716
#> Attrib am -1.0849396509954812
#> Attrib carb 1.2285702935780567
#> Attrib cyl 0.1818695743258563
#> Attrib disp -0.9855412845307867
#> Attrib drat 0.22013740186484543
#> Attrib gear 0.7371357386782589
#> Attrib hp -1.5351065297669173
#> Attrib qsec -0.45369338589380787
#> Attrib vs 1.6260257053688827
#> Attrib wt -1.5902528532550677
#> Sigmoid Node 4
#> Inputs Weights
#> Threshold -0.4967933162925222
#> Attrib am 0.126467829796456
#> Attrib carb 0.8152356327341931
#> Attrib cyl 0.6275848445614552
#> Attrib disp 2.1555424360255255
#> Attrib drat 1.3314727930786354
#> Attrib gear 0.5721194650699154
#> Attrib hp 1.072865683277106
#> Attrib qsec 0.09724135996196039
#> Attrib vs -0.9107678696259989
#> Attrib wt 0.5564055704372444
#> Sigmoid Node 5
#> Inputs Weights
#> Threshold -0.7972934621919452
#> Attrib am 0.07357788354385188
#> Attrib carb 0.5537893671766815
#> Attrib cyl 0.0851773957714638
#> Attrib disp 0.011447683396212313
#> Attrib drat 0.19141727443244932
#> Attrib gear 0.13837550265201265
#> Attrib hp 0.4693868976154397
#> Attrib qsec 0.3631364162676125
#> Attrib vs 0.2095252199744088
#> Attrib wt 0.3334639462651969
#> Class
#> Input
#> Node 0
#>
# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)
# Score the predictions
predictions$score()
#> regr.mse
#> 15.81308