Regression MultilayerPerceptron Learner
mlr_learners_regr.multilayer_perceptron.Rd
Regressor that uses backpropagation to learn a multi-layer perceptron.
Calls RWeka::make_Weka_classifier()
from RWeka.
Custom mlr3 parameters
output_debug_info
:original id: output-debug-info
do_not_check_capabilities
:original id: do-not-check-capabilities
num_decimal_places
:original id: num-decimal-places
batch_size
:original id: batch-size
Reason for change: This learner contains changed ids of the following control arguments since their ids contain irregular pattern
G
removed:GUI will be opened
Reason for change: The parameter is removed because we don't want to launch GUI.
Parameters
Id | Type | Default | Levels | Range |
subset | untyped | - | - | |
na.action | untyped | - | - | |
L | numeric | 0.3 | \([0, 1]\) | |
M | numeric | 0.2 | \([0, 1]\) | |
N | integer | 500 | \([1, \infty)\) | |
V | numeric | 0 | \([0, 100]\) | |
S | integer | 0 | \([0, \infty)\) | |
E | integer | 20 | \([1, \infty)\) | |
A | logical | FALSE | TRUE, FALSE | - |
B | logical | FALSE | TRUE, FALSE | - |
H | untyped | "a" | - | |
C | logical | FALSE | TRUE, FALSE | - |
I | logical | FALSE | TRUE, FALSE | - |
R | logical | FALSE | TRUE, FALSE | - |
D | logical | FALSE | TRUE, FALSE | - |
output_debug_info | logical | FALSE | TRUE, FALSE | - |
do_not_check_capabilities | logical | FALSE | TRUE, FALSE | - |
num_decimal_places | integer | 2 | \([1, \infty)\) | |
batch_size | integer | 100 | \([1, \infty)\) | |
options | untyped | NULL | - |
See also
as.data.table(mlr_learners)
for a table of available Learners in the running session (depending on the loaded packages).Chapter in the mlr3book: https://mlr3book.mlr-org.com/basics.html#learners
mlr3learners for a selection of recommended learners.
mlr3cluster for unsupervised clustering learners.
mlr3pipelines to combine learners with pre- and postprocessing steps.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
Super classes
mlr3::Learner
-> mlr3::LearnerRegr
-> LearnerRegrMultilayerPerceptron
Examples
# Define the Learner
learner = mlr3::lrn("regr.multilayer_perceptron")
print(learner)
#> <LearnerRegrMultilayerPerceptron:regr.multilayer_perceptron>: MultilayerPerceptron
#> * Model: -
#> * Parameters: list()
#> * Packages: mlr3, RWeka
#> * Predict Types: [response]
#> * Feature Types: logical, integer, numeric, factor, ordered
#> * Properties: missings
# Define a Task
task = mlr3::tsk("mtcars")
# Create train and test set
ids = mlr3::partition(task)
# Train the learner on the training ids
learner$train(task, row_ids = ids$train)
print(learner$model)
#> Linear Node 0
#> Inputs Weights
#> Threshold -0.726753583423911
#> Node 1 0.7473042132161005
#> Node 2 -1.6780318069410605
#> Node 3 1.9876406550434365
#> Node 4 1.4302424222141494
#> Node 5 0.771628493428028
#> Sigmoid Node 1
#> Inputs Weights
#> Threshold -0.8958037716371264
#> Attrib am 0.14612351686478478
#> Attrib carb 0.13245819780390927
#> Attrib cyl 0.013836375674023772
#> Attrib disp 0.7530429229385965
#> Attrib drat 0.13734011994550874
#> Attrib gear 0.5171013829019511
#> Attrib hp 0.4560156932368051
#> Attrib qsec 0.3916006957472461
#> Attrib vs -0.07801369566673287
#> Attrib wt 0.2856956977541658
#> Sigmoid Node 2
#> Inputs Weights
#> Threshold -1.825472766423012
#> Attrib am 1.0609314623144308
#> Attrib carb 1.567401128512153
#> Attrib cyl 0.07125018928159123
#> Attrib disp 0.8262008377282593
#> Attrib drat 0.7131884328151826
#> Attrib gear -0.1356590718040045
#> Attrib hp 1.6340924250134725
#> Attrib qsec 0.027824288393858983
#> Attrib vs 0.2297458763546777
#> Attrib wt 1.922353030564446
#> Sigmoid Node 3
#> Inputs Weights
#> Threshold -2.2802244266687524
#> Attrib am 1.647067914687276
#> Attrib carb 0.5445392594312892
#> Attrib cyl 0.08071449100080226
#> Attrib disp -0.6842348584609741
#> Attrib drat 0.3815676914775859
#> Attrib gear 0.9242523817901955
#> Attrib hp 0.6112210707532194
#> Attrib qsec 2.1502519299515193
#> Attrib vs 0.7747788453398886
#> Attrib wt 0.7306827747705306
#> Sigmoid Node 4
#> Inputs Weights
#> Threshold -1.8444755848093515
#> Attrib am 1.393825393341177
#> Attrib carb -0.17344917329022463
#> Attrib cyl -0.11297993228727722
#> Attrib disp -0.11474748345933802
#> Attrib drat 0.31397125442829
#> Attrib gear 0.5218996463656524
#> Attrib hp 0.5161989937205069
#> Attrib qsec 1.7775956586900696
#> Attrib vs -0.01924118306922032
#> Attrib wt 0.24409454344982168
#> Sigmoid Node 5
#> Inputs Weights
#> Threshold -0.8083970384330106
#> Attrib am 0.18402880380473488
#> Attrib carb 0.16810257520061234
#> Attrib cyl 0.08206069831774826
#> Attrib disp 0.7030832246174056
#> Attrib drat 0.18161916420349944
#> Attrib gear 0.5146159560764874
#> Attrib hp 0.4878114053638819
#> Attrib qsec 0.4226405429410929
#> Attrib vs -0.04184217341020344
#> Attrib wt 0.28244370690010795
#> Class
#> Input
#> Node 0
#>
# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)
# Score the predictions
predictions$score()
#> regr.mse
#> 31.0337