Regression MultilayerPerceptron Learner
Source:R/learner_RWeka_regr_multilayer_perceptron.R
mlr_learners_regr.multilayer_perceptron.RdRegressor that uses backpropagation to learn a multi-layer perceptron.
Calls RWeka::make_Weka_classifier() from RWeka.
Custom mlr3 parameters
output_debug_info:original id: output-debug-info
do_not_check_capabilities:original id: do-not-check-capabilities
num_decimal_places:original id: num-decimal-places
batch_size:original id: batch-size
Reason for change: This learner contains changed ids of the following control arguments since their ids contain irregular pattern
Gremoved:GUI will be opened
Reason for change: The parameter is removed because we don't want to launch GUI.
Parameters
| Id | Type | Default | Levels | Range |
| subset | untyped | - | - | |
| na.action | untyped | - | - | |
| L | numeric | 0.3 | \([0, 1]\) | |
| M | numeric | 0.2 | \([0, 1]\) | |
| N | integer | 500 | \([1, \infty)\) | |
| V | numeric | 0 | \([0, 100]\) | |
| S | integer | 0 | \([0, \infty)\) | |
| E | integer | 20 | \([1, \infty)\) | |
| A | logical | FALSE | TRUE, FALSE | - |
| B | logical | FALSE | TRUE, FALSE | - |
| H | untyped | "a" | - | |
| C | logical | FALSE | TRUE, FALSE | - |
| I | logical | FALSE | TRUE, FALSE | - |
| R | logical | FALSE | TRUE, FALSE | - |
| D | logical | FALSE | TRUE, FALSE | - |
| output_debug_info | logical | FALSE | TRUE, FALSE | - |
| do_not_check_capabilities | logical | FALSE | TRUE, FALSE | - |
| num_decimal_places | integer | 2 | \([1, \infty)\) | |
| batch_size | integer | 100 | \([1, \infty)\) | |
| options | untyped | NULL | - |
See also
as.data.table(mlr_learners)for a table of available Learners in the running session (depending on the loaded packages).Chapter in the mlr3book: https://mlr3book.mlr-org.com/basics.html#learners
mlr3learners for a selection of recommended learners.
mlr3cluster for unsupervised clustering learners.
mlr3pipelines to combine learners with pre- and postprocessing steps.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
Super classes
mlr3::Learner -> mlr3::LearnerRegr -> LearnerRegrMultilayerPerceptron
Methods
Inherited methods
mlr3::Learner$base_learner()mlr3::Learner$configure()mlr3::Learner$encapsulate()mlr3::Learner$format()mlr3::Learner$help()mlr3::Learner$predict()mlr3::Learner$predict_newdata()mlr3::Learner$print()mlr3::Learner$reset()mlr3::Learner$selected_features()mlr3::Learner$train()mlr3::LearnerRegr$predict_newdata_fast()
Method marshal()
Marshal the learner's model.
Arguments
...(any)
Additional arguments passed tomlr3::marshal_model().
Method unmarshal()
Unmarshal the learner's model.
Arguments
...(any)
Additional arguments passed tomlr3::unmarshal_model().
Examples
# Define the Learner
learner = lrn("regr.multilayer_perceptron")
print(learner)
#>
#> ── <LearnerRegrMultilayerPerceptron> (regr.multilayer_perceptron): MultilayerPer
#> • Model: -
#> • Parameters: list()
#> • Packages: mlr3 and RWeka
#> • Predict Types: [response]
#> • Feature Types: logical, integer, numeric, factor, and ordered
#> • Encapsulation: none (fallback: -)
#> • Properties: marshal and missings
#> • Other settings: use_weights = 'error'
# Define a Task
task = tsk("mtcars")
# Create train and test set
ids = partition(task)
# Train the learner on the training ids
learner$train(task, row_ids = ids$train)
print(learner$model)
#> Linear Node 0
#> Inputs Weights
#> Threshold -1.055902709591446
#> Node 1 1.0506507618852845
#> Node 2 -1.8337937806804157
#> Node 3 1.410903459262742
#> Node 4 1.3855595893704837
#> Node 5 0.8613988368559559
#> Sigmoid Node 1
#> Inputs Weights
#> Threshold -1.8861788740823935
#> Attrib am 0.7727630240271943
#> Attrib carb -0.27731156992333006
#> Attrib cyl 0.7182141511889826
#> Attrib disp -0.08310466914404965
#> Attrib drat 0.23112716024748067
#> Attrib gear 0.9949445508315814
#> Attrib hp -1.001617488564111
#> Attrib qsec 1.6162052983554969
#> Attrib vs -0.13814100301852755
#> Attrib wt 0.3468182385043629
#> Sigmoid Node 2
#> Inputs Weights
#> Threshold -1.5722574048571434
#> Attrib am -0.49792937657314995
#> Attrib carb 0.6567748166344578
#> Attrib cyl -1.8488577427390425
#> Attrib disp 1.0249391605238152
#> Attrib drat 1.3791884146898463
#> Attrib gear 0.31012338710474285
#> Attrib hp 2.4531332206615097
#> Attrib qsec 1.24479008087162
#> Attrib vs 1.038007662400759
#> Attrib wt 0.9298476577888982
#> Sigmoid Node 3
#> Inputs Weights
#> Threshold -0.35318829354779496
#> Attrib am -1.0734480832308602
#> Attrib carb -1.341989146417627
#> Attrib cyl 1.3444343283782993
#> Attrib disp 0.6988011147626845
#> Attrib drat 3.129008126794299
#> Attrib gear -0.12696852651615642
#> Attrib hp -1.4344248367845607
#> Attrib qsec 1.4486861275433844
#> Attrib vs 0.345904061781918
#> Attrib wt -0.6154620780015568
#> Sigmoid Node 4
#> Inputs Weights
#> Threshold -1.7845387290339354
#> Attrib am 0.9878302406369313
#> Attrib carb -0.005361850095419288
#> Attrib cyl 0.40821109677797257
#> Attrib disp -0.44196000800181456
#> Attrib drat 0.06866200064443595
#> Attrib gear 1.1639309225107608
#> Attrib hp -1.0542820389286018
#> Attrib qsec 1.8282215966880235
#> Attrib vs -0.3762178836137792
#> Attrib wt 0.7002976676874207
#> Sigmoid Node 5
#> Inputs Weights
#> Threshold -1.4196901276646465
#> Attrib am 0.6469524021551344
#> Attrib carb 0.07637127399664759
#> Attrib cyl 0.42194258844897164
#> Attrib disp -0.08855728179011524
#> Attrib drat 0.26538033842372244
#> Attrib gear 0.9476025679995238
#> Attrib hp -0.5888688630800757
#> Attrib qsec 1.194670303987708
#> Attrib vs -0.18540680562010967
#> Attrib wt 0.4937380988360902
#> Class
#> Input
#> Node 0
#>
# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)
# Score the predictions
predictions$score()
#> regr.mse
#> 25.2104