Regression MultilayerPerceptron Learner
Source:R/learner_RWeka_regr_multilayer_perceptron.R
mlr_learners_regr.multilayer_perceptron.RdRegressor that uses backpropagation to learn a multi-layer perceptron.
Calls RWeka::make_Weka_classifier() from RWeka.
Custom mlr3 parameters
output_debug_info:original id: output-debug-info
do_not_check_capabilities:original id: do-not-check-capabilities
num_decimal_places:original id: num-decimal-places
batch_size:original id: batch-size
Reason for change: This learner contains changed ids of the following control arguments since their ids contain irregular pattern
Gremoved:GUI will be opened
Reason for change: The parameter is removed because we don't want to launch GUI.
Parameters
| Id | Type | Default | Levels | Range |
| subset | untyped | - | - | |
| na.action | untyped | - | - | |
| L | numeric | 0.3 | \([0, 1]\) | |
| M | numeric | 0.2 | \([0, 1]\) | |
| N | integer | 500 | \([1, \infty)\) | |
| V | numeric | 0 | \([0, 100]\) | |
| S | integer | 0 | \([0, \infty)\) | |
| E | integer | 20 | \([1, \infty)\) | |
| A | logical | FALSE | TRUE, FALSE | - |
| B | logical | FALSE | TRUE, FALSE | - |
| H | untyped | "a" | - | |
| C | logical | FALSE | TRUE, FALSE | - |
| I | logical | FALSE | TRUE, FALSE | - |
| R | logical | FALSE | TRUE, FALSE | - |
| D | logical | FALSE | TRUE, FALSE | - |
| output_debug_info | logical | FALSE | TRUE, FALSE | - |
| do_not_check_capabilities | logical | FALSE | TRUE, FALSE | - |
| num_decimal_places | integer | 2 | \([1, \infty)\) | |
| batch_size | integer | 100 | \([1, \infty)\) | |
| options | untyped | NULL | - |
See also
as.data.table(mlr_learners)for a table of available Learners in the running session (depending on the loaded packages).Chapter in the mlr3book: https://mlr3book.mlr-org.com/basics.html#learners
mlr3learners for a selection of recommended learners.
mlr3cluster for unsupervised clustering learners.
mlr3pipelines to combine learners with pre- and postprocessing steps.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
Super classes
mlr3::Learner -> mlr3::LearnerRegr -> LearnerRegrMultilayerPerceptron
Methods
Inherited methods
mlr3::Learner$base_learner()mlr3::Learner$configure()mlr3::Learner$encapsulate()mlr3::Learner$format()mlr3::Learner$help()mlr3::Learner$predict()mlr3::Learner$predict_newdata()mlr3::Learner$print()mlr3::Learner$reset()mlr3::Learner$selected_features()mlr3::Learner$train()mlr3::LearnerRegr$predict_newdata_fast()
Method marshal()
Marshal the learner's model.
Arguments
...(any)
Additional arguments passed tomlr3::marshal_model().
Method unmarshal()
Unmarshal the learner's model.
Arguments
...(any)
Additional arguments passed tomlr3::unmarshal_model().
Examples
# Define the Learner
learner = lrn("regr.multilayer_perceptron")
print(learner)
#>
#> ── <LearnerRegrMultilayerPerceptron> (regr.multilayer_perceptron): MultilayerPer
#> • Model: -
#> • Parameters: list()
#> • Packages: mlr3 and RWeka
#> • Predict Types: [response]
#> • Feature Types: logical, integer, numeric, factor, and ordered
#> • Encapsulation: none (fallback: -)
#> • Properties: marshal and missings
#> • Other settings: use_weights = 'error'
# Define a Task
task = tsk("mtcars")
# Create train and test set
ids = partition(task)
# Train the learner on the training ids
learner$train(task, row_ids = ids$train)
print(learner$model)
#> Linear Node 0
#> Inputs Weights
#> Threshold 0.21162706621621583
#> Node 1 0.41868679650279816
#> Node 2 -1.3389923758827877
#> Node 3 1.0750582702488622
#> Node 4 1.5824503732888264
#> Node 5 -0.3999398052259757
#> Sigmoid Node 1
#> Inputs Weights
#> Threshold -1.7641706302716464
#> Attrib am 0.5670779295539848
#> Attrib carb 0.32093230562612945
#> Attrib cyl 0.36768883513038286
#> Attrib disp 0.04693439195129315
#> Attrib drat -0.2490770045265265
#> Attrib gear 0.5896919890004775
#> Attrib hp -0.028184956808358325
#> Attrib qsec 1.2513545510243642
#> Attrib vs -0.3904508491890202
#> Attrib wt -0.7929914922159117
#> Sigmoid Node 2
#> Inputs Weights
#> Threshold 0.2388165282630692
#> Attrib am 1.048442233208473
#> Attrib carb 0.21545011405453746
#> Attrib cyl -0.07009597614671258
#> Attrib disp -1.2289766780991769
#> Attrib drat -0.459433327277691
#> Attrib gear -0.03468006346106768
#> Attrib hp 1.2386950745365048
#> Attrib qsec -0.24527889257281876
#> Attrib vs -0.3996619007151121
#> Attrib wt 2.241113928978499
#> Sigmoid Node 3
#> Inputs Weights
#> Threshold -2.2567667236121345
#> Attrib am 1.1511755197830844
#> Attrib carb 0.13778529058240763
#> Attrib cyl 0.5526132692223013
#> Attrib disp -0.062326753563834325
#> Attrib drat -0.22488908164781568
#> Attrib gear 0.5829155785976633
#> Attrib hp -0.0425830572386851
#> Attrib qsec 2.0193946005755703
#> Attrib vs -0.5535375119301894
#> Attrib wt -1.2930021300852093
#> Sigmoid Node 4
#> Inputs Weights
#> Threshold -2.379720795603192
#> Attrib am 1.6577646583608754
#> Attrib carb 0.05396017118274691
#> Attrib cyl 0.6369966065986947
#> Attrib disp -0.24663256884012622
#> Attrib drat -0.17134862238185672
#> Attrib gear 0.6879208644277344
#> Attrib hp 0.09446915874164537
#> Attrib qsec 2.7216367302771585
#> Attrib vs -0.8642203665344904
#> Attrib wt -1.3764328399583055
#> Sigmoid Node 5
#> Inputs Weights
#> Threshold -1.103945099283655
#> Attrib am 0.07610612294445827
#> Attrib carb 0.7400325285084561
#> Attrib cyl 0.15089932689751898
#> Attrib disp 0.07709428120168625
#> Attrib drat 0.09294133523919618
#> Attrib gear 0.4940986833840341
#> Attrib hp 0.30668580694646536
#> Attrib qsec 0.5138862372467303
#> Attrib vs -0.20260832813556315
#> Attrib wt -0.06646433097497233
#> Class
#> Input
#> Node 0
#>
# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)
# Score the predictions
predictions$score()
#> regr.mse
#> 7.721701