Polynomial regression.
Calls polyreg::polyFit() from polyreg.
Initial parameter values
deg: We have set this to 2, pretty arbitrarily.noisy: We have set this to FALSE, to get no output on the console.
Meta Information
Task type: “regr”
Predict Types: “response”
Feature Types: “numeric”, “factor”
Required Packages: mlr3, mlr3extralearners, polyreg
Parameters
| Id | Type | Default | Levels | Range |
| deg | integer | - | \([0, \infty)\) | |
| maxInteractDeg | integer | - | \([0, \infty)\) | |
| return_xy | logical | FALSE | TRUE, FALSE | - |
| returnPoly | logical | FALSE | TRUE, FALSE | - |
| noisy | logical | TRUE | TRUE, FALSE | - |
See also
as.data.table(mlr_learners)for a table of available Learners in the running session (depending on the loaded packages).Chapter in the mlr3book: https://mlr3book.mlr-org.com/basics.html#learners
mlr3learners for a selection of recommended learners.
mlr3cluster for unsupervised clustering learners.
mlr3pipelines to combine learners with pre- and postprocessing steps.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
Super classes
mlr3::Learner -> mlr3::LearnerRegr -> LearnerRegrPolyFit
Methods
Inherited methods
mlr3::Learner$base_learner()mlr3::Learner$configure()mlr3::Learner$encapsulate()mlr3::Learner$format()mlr3::Learner$help()mlr3::Learner$predict()mlr3::Learner$predict_newdata()mlr3::Learner$print()mlr3::Learner$reset()mlr3::Learner$selected_features()mlr3::Learner$train()mlr3::LearnerRegr$predict_newdata_fast()