Regression Random Forest Learner from Weka
Source:R/learner_RWeka_regr_random_forest_weka.R
mlr_learners_regr.random_forest_weka.RdClass for constructing a forest of random trees.
Calls RWeka::make_Weka_classifier() from RWeka.
Custom mlr3 parameters
output_debug_info:original id: output-debug-info
do_not_check_capabilities:original id: do-not-check-capabilities
num_decimal_places:original id: num-decimal-places
batch_size:original id: batch-size
store_out_of_bag_predictions:original id: store-out-of-bag-predictions
output_out_of_bag_complexity_statistics:original id: output-out-of-bag-complexity-statistics
num_slots:original id: num-slots
Reason for change: This learner contains changed ids of the following control arguments since their ids contain irregular pattern
attribute-importanceremoved:Compute and output attribute importance (mean impurity decrease method)
Reason for change: The parameter is removed because it's unclear how to actually use it.
Parameters
| Id | Type | Default | Levels | Range |
| subset | untyped | - | - | |
| na.action | untyped | - | - | |
| P | numeric | 100 | \([0, 100]\) | |
| O | logical | FALSE | TRUE, FALSE | - |
| store_out_of_bag_predictions | logical | FALSE | TRUE, FALSE | - |
| output_out_of_bag_complexity_statistics | logical | FALSE | TRUE, FALSE | - |
| logical | FALSE | TRUE, FALSE | - | |
| I | integer | 100 | \([1, \infty)\) | |
| num_slots | integer | 1 | \((-\infty, \infty)\) | |
| K | integer | 0 | \((-\infty, \infty)\) | |
| M | integer | 1 | \([1, \infty)\) | |
| V | numeric | 0.001 | \((-\infty, \infty)\) | |
| S | integer | 1 | \((-\infty, \infty)\) | |
| depth | integer | 0 | \([0, \infty)\) | |
| N | integer | 0 | \((-\infty, \infty)\) | |
| U | logical | FALSE | TRUE, FALSE | - |
| B | logical | FALSE | TRUE, FALSE | - |
| output_debug_info | logical | FALSE | TRUE, FALSE | - |
| do_not_check_capabilities | logical | FALSE | TRUE, FALSE | - |
| num_decimal_places | integer | 2 | \([1, \infty)\) | |
| batch_size | integer | 100 | \([1, \infty)\) | |
| options | untyped | NULL | - |
References
Breiman, Leo (2001). “Random Forests.” Machine Learning, 45(1), 5–32. ISSN 1573-0565, doi:10.1023/A:1010933404324 .
See also
as.data.table(mlr_learners)for a table of available Learners in the running session (depending on the loaded packages).Chapter in the mlr3book: https://mlr3book.mlr-org.com/basics.html#learners
mlr3learners for a selection of recommended learners.
mlr3cluster for unsupervised clustering learners.
mlr3pipelines to combine learners with pre- and postprocessing steps.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
Super classes
mlr3::Learner -> mlr3::LearnerRegr -> LearnerRegrRandomForestWeka
Methods
Inherited methods
mlr3::Learner$base_learner()mlr3::Learner$configure()mlr3::Learner$encapsulate()mlr3::Learner$format()mlr3::Learner$help()mlr3::Learner$predict()mlr3::Learner$predict_newdata()mlr3::Learner$print()mlr3::Learner$reset()mlr3::Learner$selected_features()mlr3::Learner$train()mlr3::LearnerRegr$predict_newdata_fast()
Method marshal()
Marshal the learner's model.
Arguments
...(any)
Additional arguments passed tomlr3::marshal_model().
Method unmarshal()
Unmarshal the learner's model.
Arguments
...(any)
Additional arguments passed tomlr3::unmarshal_model().
Examples
# Define the Learner
learner = lrn("regr.random_forest_weka")
print(learner)
#>
#> ── <LearnerRegrRandomForestWeka> (regr.random_forest_weka): Random Forest ──────
#> • Model: -
#> • Parameters: list()
#> • Packages: mlr3 and RWeka
#> • Predict Types: [response]
#> • Feature Types: logical, integer, numeric, factor, and ordered
#> • Encapsulation: none (fallback: -)
#> • Properties: marshal
#> • Other settings: use_weights = 'error'
# Define a Task
task = tsk("mtcars")
# Create train and test set
ids = partition(task)
# Train the learner on the training ids
learner$train(task, row_ids = ids$train)
print(learner$model)
#> RandomForest
#>
#> Bagging with 100 iterations and base learner
#>
#> weka.classifiers.trees.RandomTree -K 0 -M 1.0 -V 0.001 -S 1 -do-not-check-capabilities
# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)
# Score the predictions
predictions$score()
#> regr.mse
#> 4.111179