Regression Random Tree Learner
Source:R/learner_RWeka_regr_random_tree.R
mlr_learners_regr.random_tree.RdTree that considers K randomly chosen attributes at each node.
Calls RWeka::make_Weka_classifier() from RWeka.
Custom mlr3 parameters
output_debug_info:original id: output-debug-info
do_not_check_capabilities:original id: do-not-check-capabilities
num_decimal_places:original id: num-decimal-places
batch_size:original id: batch-size
Reason for change: This learner contains changed ids of the following control arguments since their ids contain irregular pattern
Parameters
| Id | Type | Default | Levels | Range |
| subset | untyped | - | - | |
| na.action | untyped | - | - | |
| K | integer | 0 | \([0, \infty)\) | |
| M | integer | 1 | \([1, \infty)\) | |
| V | numeric | 0.001 | \((-\infty, \infty)\) | |
| S | integer | 1 | \((-\infty, \infty)\) | |
| depth | integer | 0 | \([0, \infty)\) | |
| N | integer | 0 | \([0, \infty)\) | |
| U | logical | FALSE | TRUE, FALSE | - |
| B | logical | FALSE | TRUE, FALSE | - |
| output_debug_info | logical | FALSE | TRUE, FALSE | - |
| do_not_check_capabilities | logical | FALSE | TRUE, FALSE | - |
| num_decimal_places | integer | 2 | \([1, \infty)\) | |
| batch_size | integer | 100 | \([1, \infty)\) | |
| options | untyped | NULL | - |
See also
as.data.table(mlr_learners)for a table of available Learners in the running session (depending on the loaded packages).Chapter in the mlr3book: https://mlr3book.mlr-org.com/basics.html#learners
mlr3learners for a selection of recommended learners.
mlr3cluster for unsupervised clustering learners.
mlr3pipelines to combine learners with pre- and postprocessing steps.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
Super classes
mlr3::Learner -> mlr3::LearnerRegr -> LearnerRegrRandomTree
Methods
Inherited methods
mlr3::Learner$base_learner()mlr3::Learner$configure()mlr3::Learner$encapsulate()mlr3::Learner$format()mlr3::Learner$help()mlr3::Learner$predict()mlr3::Learner$predict_newdata()mlr3::Learner$print()mlr3::Learner$reset()mlr3::Learner$selected_features()mlr3::Learner$train()mlr3::LearnerRegr$predict_newdata_fast()
Method marshal()
Marshal the learner's model.
Arguments
...(any)
Additional arguments passed tomlr3::marshal_model().
Method unmarshal()
Unmarshal the learner's model.
Arguments
...(any)
Additional arguments passed tomlr3::unmarshal_model().
Examples
# Define the Learner
learner = lrn("regr.random_tree")
print(learner)
#>
#> ── <LearnerRegrRandomTree> (regr.random_tree): Random Tree ─────────────────────
#> • Model: -
#> • Parameters: list()
#> • Packages: mlr3 and RWeka
#> • Predict Types: [response]
#> • Feature Types: logical, integer, numeric, factor, and ordered
#> • Encapsulation: none (fallback: -)
#> • Properties: marshal and missings
#> • Other settings: use_weights = 'error'
# Define a Task
task = tsk("mtcars")
# Create train and test set
ids = partition(task)
# Train the learner on the training ids
learner$train(task, row_ids = ids$train)
print(learner$model)
#>
#> RandomTree
#> ==========
#>
#> cyl < 5
#> | wt < 1.89
#> | | gear < 4.5 : 33.9 (1/0)
#> | | gear >= 4.5 : 30.4 (1/0)
#> | wt >= 1.89
#> | | qsec < 19.45
#> | | | disp < 99.65 : 27.3 (1/0)
#> | | | disp >= 99.65 : 26 (1/0)
#> | | qsec >= 19.45
#> | | | hp < 78.5 : 24.4 (1/0)
#> | | | hp >= 78.5
#> | | | | wt < 2.81 : 21.5 (1/0)
#> | | | | wt >= 2.81 : 22.8 (1/0)
#> cyl >= 5
#> | disp < 266.9
#> | | drat < 2.92 : 18.1 (1/0)
#> | | drat >= 2.92
#> | | | hp < 116.5
#> | | | | am < 0.5 : 21.4 (1/0)
#> | | | | am >= 0.5 : 21 (1/0)
#> | | | hp >= 116.5
#> | | | | am < 0.5 : 19.2 (1/0)
#> | | | | am >= 0.5 : 19.7 (1/0)
#> | disp >= 266.9
#> | | disp < 456
#> | | | drat < 3.18
#> | | | | disp < 289.9
#> | | | | | qsec < 17.8
#> | | | | | | qsec < 17.5 : 16.4 (1/0)
#> | | | | | | qsec >= 17.5 : 17.3 (1/0)
#> | | | | | qsec >= 17.8 : 15.2 (1/0)
#> | | | | disp >= 289.9 : 15.35 (2/0.02)
#> | | | drat >= 3.18
#> | | | | qsec < 15.63 : 13.3 (1/0)
#> | | | | qsec >= 15.63
#> | | | | | drat < 3.22 : 14.3 (1/0)
#> | | | | | drat >= 3.22 : 14.7 (1/0)
#> | | disp >= 456 : 10.4 (1/0)
#>
#> Size of the tree : 39
# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)
# Score the predictions
predictions$score()
#> regr.mse
#> 13.16318