Regression Support Vector Machine Learner
Source:R/learner_RWeka_regr_smo_reg.R
mlr_learners_regr.smo_reg.RdSupport Vector Machine for regression.
Calls RWeka::make_Weka_classifier() from RWeka.
Custom mlr3 parameters
output_debug_info:original id: output-debug-info
do_not_check_capabilities:original id: do-not-check-capabilities
num_decimal_places:original id: num-decimal-places
batch_size:original id: batch-size
T_improved:original id: T
V_improved:original id: V
P_improved:original id: P
L_improved:original id: L (duplicated L for when I is set to RegSMOImproved)
W_improved:original id: W
C_poly:original id: C
E_poly:original id: E
L_poly:original id: L (duplicated L for when K is set to PolyKernel)
Reason for change: This learner contains changed ids of the following control arguments since their ids contain irregular pattern
Parameters
| Id | Type | Default | Levels | Range |
| subset | untyped | - | - | |
| na.action | untyped | - | - | |
| C | numeric | 1 | \((-\infty, \infty)\) | |
| N | character | 0 | 0, 1, 2 | - |
| I | character | RegSMOImproved | RegSMO, RegSMOImproved | - |
| K | character | PolyKernel | NormalizedPolyKernel, PolyKernel, Puk, RBFKernel, StringKernel | - |
| T_improved | numeric | 0.001 | \((-\infty, \infty)\) | |
| V_improved | logical | TRUE | TRUE, FALSE | - |
| P_improved | numeric | 1e-12 | \((-\infty, \infty)\) | |
| L_improved | numeric | 0.001 | \((-\infty, \infty)\) | |
| W_improved | integer | 1 | \((-\infty, \infty)\) | |
| C_poly | integer | 250007 | \((-\infty, \infty)\) | |
| E_poly | numeric | 1 | \((-\infty, \infty)\) | |
| L_poly | logical | FALSE | TRUE, FALSE | - |
| output_debug_info | logical | FALSE | TRUE, FALSE | - |
| do_not_check_capabilities | logical | FALSE | TRUE, FALSE | - |
| num_decimal_places | integer | 2 | \([1, \infty)\) | |
| batch_size | integer | 100 | \([1, \infty)\) | |
| options | untyped | NULL | - |
References
Shevade S, Keerthi S, Bhattacharyya C, Murthy K (1999). “Improvements to the SMO Algorithm for SVM Regression.” In IEEE Transactions on Neural Networks.
See also
as.data.table(mlr_learners)for a table of available Learners in the running session (depending on the loaded packages).Chapter in the mlr3book: https://mlr3book.mlr-org.com/basics.html#learners
mlr3learners for a selection of recommended learners.
mlr3cluster for unsupervised clustering learners.
mlr3pipelines to combine learners with pre- and postprocessing steps.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
Super classes
mlr3::Learner -> mlr3::LearnerRegr -> LearnerRegrSMOreg
Methods
Inherited methods
mlr3::Learner$base_learner()mlr3::Learner$configure()mlr3::Learner$encapsulate()mlr3::Learner$format()mlr3::Learner$help()mlr3::Learner$predict()mlr3::Learner$predict_newdata()mlr3::Learner$print()mlr3::Learner$reset()mlr3::Learner$selected_features()mlr3::Learner$train()mlr3::LearnerRegr$predict_newdata_fast()
Method marshal()
Marshal the learner's model.
Arguments
...(any)
Additional arguments passed tomlr3::marshal_model().
Method unmarshal()
Unmarshal the learner's model.
Arguments
...(any)
Additional arguments passed tomlr3::unmarshal_model().
Examples
# Define the Learner
learner = lrn("regr.smo_reg")
print(learner)
#>
#> ── <LearnerRegrSMOreg> (regr.smo_reg): Support Vector Machine ──────────────────
#> • Model: -
#> • Parameters: list()
#> • Packages: mlr3 and RWeka
#> • Predict Types: [response]
#> • Feature Types: logical, integer, numeric, factor, and ordered
#> • Encapsulation: none (fallback: -)
#> • Properties: marshal and missings
#> • Other settings: use_weights = 'error'
# Define a Task
task = tsk("mtcars")
# Create train and test set
ids = partition(task)
# Train the learner on the training ids
learner$train(task, row_ids = ids$train)
print(learner$model)
#> SMOreg
#>
#> weights (not support vectors):
#> + 0.0301 * (normalized) am
#> - 0.1701 * (normalized) carb
#> + 0.1248 * (normalized) cyl
#> + 0.0385 * (normalized) disp
#> + 0.37 * (normalized) drat
#> + 0.0303 * (normalized) gear
#> - 0.3648 * (normalized) hp
#> + 0.0615 * (normalized) qsec
#> - 0.0058 * (normalized) vs
#> - 0.1998 * (normalized) wt
#> + 0.4558
#>
#>
#>
#> Number of kernel evaluations: 231 (95.474% cached)
# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)
# Score the predictions
predictions$score()
#> regr.mse
#> 17.77637