Skip to contents

Gradient boosting with regression trees for survival analysis. Calls mboost::blackboost() from mboost.

Details

distr prediction made by mboost::survFit().

Prediction types

This learner returns two to three prediction types:

  1. lp: a vector containing the linear predictors (relative risk scores), where each score corresponds to a specific test observation. Calculated using mboost::predict.blackboost(). If the family parameter is not "coxph", -lp is returned, since non-coxph families represent AFT-style distributions where lower lp values indicate higher risk.

  2. crank: same as lp.

  3. distr: a survival matrix in two dimensions, where observations are represented in rows and time points in columns. Calculated using mboost::survFit(). This prediction type is present only when the family distribution parameter is equal to "coxph" (default). By default the Breslow estimator is used for computing the baseline hazard.

Dictionary

This Learner can be instantiated via lrn():

lrn("surv.blackboost")

Meta Information

Parameters

IdTypeDefaultLevelsRange
familycharactercoxphcoxph, weibull, loglog, lognormal, gehan, cindex, custom-
custom.familyuntyped--
nuirangeuntypedc(0, 100)-
offsetuntyped--
centerlogicalTRUETRUE, FALSE-
mstopinteger100\([0, \infty)\)
nunumeric0.1\([0, 1]\)
riskcharacter-inbag, oobag, none-
stopinternlogicalFALSETRUE, FALSE-
tracelogicalFALSETRUE, FALSE-
oobweightsuntyped--
teststatcharacterquadraticquadratic, maximum-
splitstatcharacterquadraticquadratic, maximum-
splittestlogicalFALSETRUE, FALSE-
testtypecharacterBonferroniBonferroni, MonteCarlo, Univariate, Teststatistic-
maxptsinteger25000\([1, \infty)\)
absepsnumeric0.001\((-\infty, \infty)\)
relepsnumeric0\((-\infty, \infty)\)
nmaxuntyped--
alphanumeric0.05\([0, 1]\)
mincriterionnumeric0.95\([0, 1]\)
logmincriterionnumeric-0.05129329\((-\infty, 0]\)
minsplitinteger20\([0, \infty)\)
minbucketinteger7\([0, \infty)\)
minprobnumeric0.01\([0, 1]\)
stumplogicalFALSETRUE, FALSE-
lookaheadlogicalFALSETRUE, FALSE-
MIAlogicalFALSETRUE, FALSE-
nresampleinteger9999\([1, \infty)\)
tolnumeric1.490116e-08\([0, \infty)\)
maxsurrogateinteger0\([0, \infty)\)
mtryinteger-\([0, \infty)\)
maxdepthinteger-\([0, \infty)\)
multiwaylogicalFALSETRUE, FALSE-
splittryinteger2\([1, \infty)\)
intersplitlogicalFALSETRUE, FALSE-
majoritylogicalFALSETRUE, FALSE-
caseweightslogicalTRUETRUE, FALSE-
sigmanumeric0.1\([0, 1]\)
ipcwuntyped1-
na.actionuntypedstats::na.omit-

References

Bühlmann, Peter, Yu, Bin (2003). “Boosting with the L 2 loss: regression and classification.” Journal of the American Statistical Association, 98(462), 324–339.

See also

Author

RaphaelS1

Super classes

mlr3::Learner -> mlr3proba::LearnerSurv -> LearnerSurvBlackBoost

Methods

Inherited methods


Method new()

Creates a new instance of this R6 class.

Usage


Method clone()

The objects of this class are cloneable with this method.

Usage

LearnerSurvBlackBoost$clone(deep = FALSE)

Arguments

deep

Whether to make a deep clone.

Examples

# Define the Learner
learner = mlr3::lrn("surv.blackboost")
print(learner)
#> <LearnerSurvBlackBoost:surv.blackboost>: Gradient Boosting
#> * Model: -
#> * Parameters: family=coxph
#> * Packages: mlr3, mlr3proba, mlr3extralearners, mboost, pracma
#> * Predict Types:  [crank], distr, lp
#> * Feature Types: integer, numeric, factor
#> * Properties: weights

# Define a Task
task = mlr3::tsk("grace")

# Create train and test set
ids = mlr3::partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)
#> 
#> 	 Model-based Boosting
#> 
#> Call:
#> mboost::blackboost(formula = task$formula(task$feature_names),     data = task$data(), family = family)
#> 
#> 
#> 	 Cox Partial Likelihood 
#> 
#> Loss function:  
#> 
#> Number of boosting iterations: mstop = 100 
#> Step size:  0.1 
#> Offset:  0 
#> Number of baselearners:  1 
#> 


# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()
#> surv.cindex 
#>   0.8380389