Skip to contents

A random forest based on conditional inference trees (ctree). Calls partykit::cforest() from partykit.

Prediction types

This learner returns two prediction types:

  1. distr: a survival matrix in two dimensions, where observations are represented in rows and time points in columns. Calculated using the internal partykit::predict.cforest() function.

  2. crank: the expected mortality using mlr3proba::.surv_return().

Dictionary

This Learner can be instantiated via lrn():

lrn("surv.cforest")

Meta Information

Parameters

IdTypeDefaultLevelsRange
ntreeinteger500\([1, \infty)\)
replacelogicalFALSETRUE, FALSE-
fractionnumeric0.632\([0, 1]\)
mtryinteger-\([0, \infty)\)
mtryrationumeric-\([0, 1]\)
applyfununtyped--
coresintegerNULL\((-\infty, \infty)\)
tracelogicalFALSETRUE, FALSE-
offsetuntyped--
clusteruntyped--
na.actionuntyped"stats::na.pass"-
scoresuntyped--
teststatcharacterquadraticquadratic, maximum-
splitstatcharacterquadraticquadratic, maximum-
splittestlogicalFALSETRUE, FALSE-
testtypecharacterUnivariateBonferroni, MonteCarlo, Univariate, Teststatistic-
nmaxuntyped--
alphanumeric0.05\([0, 1]\)
mincriterionnumeric0.95\([0, 1]\)
logmincriterionnumeric-0.05129329\((-\infty, \infty)\)
minsplitinteger20\([1, \infty)\)
minbucketinteger7\([1, \infty)\)
minprobnumeric0.01\([0, 1]\)
stumplogicalFALSETRUE, FALSE-
lookaheadlogicalFALSETRUE, FALSE-
MIAlogicalFALSETRUE, FALSE-
nresampleinteger9999\([1, \infty)\)
tolnumeric1.490116e-08\([0, \infty)\)
maxsurrogateinteger0\([0, \infty)\)
numsurrogatelogicalFALSETRUE, FALSE-
maxdepthintegerInf\([0, \infty)\)
multiwaylogicalFALSETRUE, FALSE-
splittryinteger2\([0, \infty)\)
intersplitlogicalFALSETRUE, FALSE-
majoritylogicalFALSETRUE, FALSE-
caseweightslogicalTRUETRUE, FALSE-
saveinfologicalFALSETRUE, FALSE-
updatelogicalFALSETRUE, FALSE-
splitflavourcharacterctreectree, exhaustive-
maxvarinteger-\([1, \infty)\)
OOBlogicalFALSETRUE, FALSE-
simplifylogicalTRUETRUE, FALSE-
scalelogicalTRUETRUE, FALSE-
maxptsinteger25000\((-\infty, \infty)\)
absepsnumeric0.001\([0, \infty)\)
relepsnumeric0\([0, \infty)\)

Initial parameter values

  • cores: This parameter is initialized to 1 (default is NULL) to avoid threading conflicts with future.

Custom mlr3 parameters

  • mtry:

    • This hyperparameter can alternatively be set via the added hyperparameter mtryratio as mtry = max(ceiling(mtryratio * n_features), 1). Note that mtry and mtryratio are mutually exclusive.

References

Hothorn T, Zeileis A (2015). “partykit: A Modular Toolkit for Recursive Partytioning in R.” Journal of Machine Learning Research, 16(118), 3905-3909. http://jmlr.org/papers/v16/hothorn15a.html.

Hothorn T, Hornik K, Zeileis A (2006). “Unbiased Recursive Partitioning: A Conditional Inference Framework.” Journal of Computational and Graphical Statistics, 15(3), 651–674. doi:10.1198/106186006x133933 , https://doi.org/10.1198/106186006x133933.

See also

Author

RaphaelS1

Super classes

mlr3::Learner -> mlr3proba::LearnerSurv -> LearnerSurvCForest

Methods

Inherited methods


Method new()

Creates a new instance of this R6 class.

Usage


Method clone()

The objects of this class are cloneable with this method.

Usage

LearnerSurvCForest$clone(deep = FALSE)

Arguments

deep

Whether to make a deep clone.

Examples

task = tsk("rats")
learner = lrn("surv.cforest", ntree = 50)
splits = partition(task)
learner$train(task, splits$train)
pred = learner$predict(task, splits$test)