Cross-Validated GLM with Elastic Net Regularization Survival Learner
mlr_learners_surv.cv_glmnet.Rd
Generalized linear models with elastic net regularization.
Calls glmnet::cv.glmnet()
from package glmnet.
Prediction types
This learner returns three prediction types:
lp
: a vector containing the linear predictors (relative risk scores), where each score corresponds to a specific test observation. Calculated usingglmnet::predict.cv.glmnet()
.crank
: same aslp
.distr
: a survival matrix in two dimensions, where observations are represented in rows and time points in columns. Calculated usingglmnet::survfit.cv.glmnet()
. Parametersstype
andctype
relate to howlp
predictions are transformed into survival predictions and are described insurvival::survfit.coxph()
. By default the Breslow estimator is used for computing the baseline hazard.
Meta Information
Task type: “surv”
Predict Types: “crank”, “distr”, “lp”
Feature Types: “logical”, “integer”, “numeric”
Required Packages: mlr3, mlr3proba, mlr3extralearners, glmnet
Parameters
Id | Type | Default | Levels | Range |
alignment | character | lambda | lambda, fraction | - |
alpha | numeric | 1 | \([0, 1]\) | |
big | numeric | 9.9e+35 | \((-\infty, \infty)\) | |
devmax | numeric | 0.999 | \([0, 1]\) | |
dfmax | integer | - | \([0, \infty)\) | |
eps | numeric | 1e-06 | \([0, 1]\) | |
epsnr | numeric | 1e-08 | \([0, 1]\) | |
exclude | untyped | - | - | |
exmx | numeric | 250 | \((-\infty, \infty)\) | |
fdev | numeric | 1e-05 | \([0, 1]\) | |
foldid | untyped | NULL | - | |
gamma | untyped | - | - | |
grouped | logical | TRUE | TRUE, FALSE | - |
intercept | logical | TRUE | TRUE, FALSE | - |
keep | logical | FALSE | TRUE, FALSE | - |
lambda | untyped | - | - | |
lambda.min.ratio | numeric | - | \([0, 1]\) | |
lower.limits | untyped | -Inf | - | |
maxit | integer | 100000 | \([1, \infty)\) | |
mnlam | integer | 5 | \([1, \infty)\) | |
mxit | integer | 100 | \([1, \infty)\) | |
mxitnr | integer | 25 | \([1, \infty)\) | |
nfolds | integer | 10 | \([3, \infty)\) | |
nlambda | integer | 100 | \([1, \infty)\) | |
offset | untyped | NULL | - | |
newoffset | untyped | - | - | |
parallel | logical | FALSE | TRUE, FALSE | - |
penalty.factor | untyped | - | - | |
pmax | integer | - | \([0, \infty)\) | |
pmin | numeric | 1e-09 | \([0, 1]\) | |
prec | numeric | 1e-10 | \((-\infty, \infty)\) | |
predict.gamma | numeric | gamma.1se | \((-\infty, \infty)\) | |
relax | logical | FALSE | TRUE, FALSE | - |
s | numeric | lambda.1se | \([0, \infty)\) | |
standardize | logical | TRUE | TRUE, FALSE | - |
standardize.response | logical | FALSE | TRUE, FALSE | - |
thresh | numeric | 1e-07 | \([0, \infty)\) | |
trace.it | integer | 0 | \([0, 1]\) | |
type.gaussian | character | - | covariance, naive | - |
type.logistic | character | Newton | Newton, modified.Newton | - |
type.measure | character | deviance | deviance, C | - |
type.multinomial | character | ungrouped | ungrouped, grouped | - |
upper.limits | untyped | Inf | - | |
stype | integer | 2 | \([1, 2]\) | |
ctype | integer | - | \([1, 2]\) |
References
Friedman J, Hastie T, Tibshirani R (2010). “Regularization Paths for Generalized Linear Models via Coordinate Descent.” Journal of Statistical Software, 33(1), 1–22. doi:10.18637/jss.v033.i01 .
See also
as.data.table(mlr_learners)
for a table of available Learners in the running session (depending on the loaded packages).Chapter in the mlr3book: https://mlr3book.mlr-org.com/basics.html#learners
mlr3learners for a selection of recommended learners.
mlr3cluster for unsupervised clustering learners.
mlr3pipelines to combine learners with pre- and postprocessing steps.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
Super classes
mlr3::Learner
-> mlr3proba::LearnerSurv
-> LearnerSurvCVGlmnet
Methods
Method selected_features()
Returns the set of selected features as reported by glmnet::predict.glmnet()
with type
set to "nonzero"
.
Arguments
lambda
(
numeric(1)
)
Customlambda
, defaults to the active lambda depending on parameter set.
Returns
(character()
) of feature names.
Examples
# Define the Learner
learner = mlr3::lrn("surv.cv_glmnet")
print(learner)
#> <LearnerSurvCVGlmnet:surv.cv_glmnet>: Regularized Generalized Linear Model
#> * Model: -
#> * Parameters: list()
#> * Packages: mlr3, mlr3proba, mlr3extralearners, glmnet
#> * Predict Types: [crank], distr, lp
#> * Feature Types: logical, integer, numeric
#> * Properties: selected_features, weights
# Define a Task
task = mlr3::tsk("grace")
# Create train and test set
ids = mlr3::partition(task)
# Train the learner on the training ids
learner$train(task, row_ids = ids$train)
print(learner$model)
#> $model
#>
#> Call: (if (cv) glmnet::cv.glmnet else glmnet::glmnet)(x = data, y = target, family = "cox")
#>
#> Measure: Partial Likelihood Deviance
#>
#> Lambda Index Measure SE Nonzero
#> min 0.00338 45 8.424 0.2530 6
#> 1se 0.05017 16 8.654 0.2502 6
#>
#> $x
#> age los revasc revascdays stchange sysbp
#> [1,] 28 9 0 180 1 107
#> [2,] 32 5 1 0 1 121
#> [3,] 35 5 1 2 0 172
#> [4,] 35 10 1 9 0 106
#> [5,] 34 5 0 5 0 120
#> [6,] 35 2 0 180 0 121
#> [7,] 37 9 0 180 1 151
#> [8,] 36 1 0 180 1 155
#> [9,] 36 5 1 0 1 115
#> [10,] 33 6 1 1 1 115
#> [11,] 38 16 1 10 0 160
#> [12,] 38 12 1 11 1 92
#> [13,] 40 12 1 9 0 153
#> [14,] 42 3 1 1 1 130
#> [15,] 40 2 1 1 1 148
#> [16,] 38 5 1 3 0 125
#> [17,] 42 2 0 2 0 140
#> [18,] 40 6 0 180 1 138
#> [19,] 42 2 0 180 0 100
#> [20,] 40 1 1 0 1 145
#> [21,] 42 4 0 180 0 162
#> [22,] 42 15 1 13 1 125
#> [23,] 42 12 1 10 1 170
#> [24,] 44 5 1 1 0 170
#> [25,] 45 3 0 180 1 154
#> [26,] 41 10 1 8 0 150
#> [27,] 44 3 0 180 0 141
#> [28,] 45 6 0 180 1 170
#> [29,] 41 5 1 4 1 141
#> [30,] 44 2 1 1 1 150
#> [31,] 46 15 0 180 0 120
#> [32,] 47 4 1 3 0 118
#> [33,] 48 15 0 180 1 160
#> [34,] 45 3 0 150 0 130
#> [35,] 46 7 1 2 0 166
#> [36,] 43 29 0 180 1 180
#> [37,] 45 4 1 0 0 124
#> [38,] 43 10 0 180 0 185
#> [39,] 46 13 1 10 0 100
#> [40,] 44 0 1 0 1 96
#> [41,] 47 4 1 3 1 160
#> [42,] 45 5 0 5 0 141
#> [43,] 46 6 1 0 1 100
#> [44,] 47 2 0 180 0 108
#> [45,] 44 9 1 8 1 135
#> [46,] 45 5 0 180 1 190
#> [47,] 46 4 0 180 1 121
#> [48,] 46 15 0 180 1 120
#> [49,] 48 3 0 180 0 154
#> [50,] 47 5 1 3 1 130
#> [51,] 47 9 1 6 0 170
#> [52,] 49 4 0 180 0 117
#> [53,] 48 2 1 0 0 184
#> [54,] 47 7 0 180 0 145
#> [55,] 50 4 1 1 0 125
#> [56,] 50 6 1 2 1 140
#> [57,] 49 7 1 7 1 110
#> [58,] 46 9 1 9 1 122
#> [59,] 50 7 0 180 1 110
#> [60,] 50 7 1 0 1 92
#> [61,] 51 3 1 2 0 113
#> [62,] 50 1 1 0 0 150
#> [63,] 50 9 0 180 0 130
#> [64,] 47 8 0 180 0 160
#> [65,] 47 6 0 180 1 162
#> [66,] 52 2 0 180 0 155
#> [67,] 53 8 0 36 1 160
#> [68,] 47 2 1 1 0 110
#> [69,] 52 4 1 4 0 152
#> [70,] 49 9 1 3 0 102
#> [71,] 53 5 0 180 1 140
#> [72,] 53 5 0 77 0 159
#> [73,] 54 6 1 3 0 129
#> [74,] 51 3 1 1 0 140
#> [75,] 50 2 0 5 1 106
#> [76,] 50 10 1 6 0 122
#> [77,] 50 14 1 13 0 170
#> [78,] 49 5 1 2 1 150
#> [79,] 53 4 0 4 0 140
#> [80,] 52 14 1 7 1 200
#> [81,] 48 6 0 180 0 160
#> [82,] 53 4 1 0 1 156
#> [83,] 51 13 0 99 1 160
#> [84,] 54 9 1 0 1 138
#> [85,] 49 16 0 16 0 125
#> [86,] 55 3 1 1 0 150
#> [87,] 55 6 1 2 1 114
#> [88,] 54 9 1 1 0 130
#> [89,] 52 4 0 180 0 183
#> [90,] 50 3 0 174 1 153
#> [91,] 55 28 1 13 1 160
#> [92,] 50 7 1 1 0 156
#> [93,] 53 9 0 9 1 95
#> [94,] 53 8 1 0 1 130
#> [95,] 56 4 1 1 1 130
#> [96,] 52 5 0 175 1 117
#> [97,] 54 1 0 180 0 162
#> [98,] 52 8 0 180 0 119
#> [99,] 53 18 1 9 1 150
#> [100,] 54 3 0 180 1 180
#> [101,] 55 6 0 180 0 170
#> [102,] 52 16 0 16 0 152
#> [103,] 53 15 0 15 1 90
#> [104,] 53 4 0 180 1 150
#> [105,] 55 6 0 180 1 100
#> [106,] 55 6 1 5 1 138
#> [107,] 54 12 1 0 1 190
#> [108,] 55 2 0 134 1 140
#> [109,] 54 3 0 180 0 128
#> [110,] 56 3 0 8 1 139
#> [111,] 55 1 0 2 0 130
#> [112,] 57 3 0 3 0 120
#> [113,] 54 2 1 1 0 135
#> [114,] 52 9 1 3 0 170
#> [115,] 54 2 1 1 1 176
#> [116,] 57 5 1 3 1 138
#> [117,] 57 1 0 180 1 156
#> [118,] 57 1 0 1 1 100
#> [119,] 56 4 1 0 1 140
#> [120,] 55 11 1 7 0 104
#> [121,] 52 15 1 14 0 130
#> [122,] 53 3 1 0 1 200
#> [123,] 57 10 0 180 1 170
#> [124,] 58 8 0 8 1 130
#> [125,] 55 3 1 1 1 156
#> [126,] 57 0 0 0 1 150
#> [127,] 53 15 1 10 1 130
#> [128,] 54 17 1 8 1 227
#> [129,] 55 9 1 2 1 147
#> [130,] 55 13 0 166 1 140
#> [131,] 56 5 0 5 1 150
#> [132,] 53 7 1 0 1 120
#> [133,] 57 11 1 10 1 129
#> [134,] 55 5 0 5 1 131
#> [135,] 54 7 1 0 1 141
#> [136,] 56 4 0 4 0 164
#> [137,] 58 9 1 0 1 180
#> [138,] 58 1 1 1 1 200
#> [139,] 59 9 1 1 1 125
#> [140,] 57 1 0 180 0 148
#> [141,] 60 11 1 9 0 106
#> [142,] 59 3 0 180 0 120
#> [143,] 58 4 1 0 1 160
#> [144,] 57 2 0 2 1 120
#> [145,] 58 11 1 9 1 124
#> [146,] 55 5 1 0 1 160
#> [147,] 57 10 1 9 0 103
#> [148,] 59 6 1 0 1 140
#> [149,] 59 5 0 180 1 155
#> [150,] 59 4 1 0 1 152
#> [151,] 58 26 1 0 1 189
#> [152,] 61 9 0 9 1 160
#> [153,] 58 4 1 3 0 120
#> [154,] 60 0 1 0 1 80
#> [155,] 59 2 1 1 0 140
#> [156,] 58 8 0 161 1 140
#> [157,] 58 14 1 6 0 190
#> [158,] 61 4 1 3 0 151
#> [159,] 61 9 1 8 0 150
#> [160,] 61 3 1 2 1 102
#> [161,] 61 20 1 13 0 130
#> [162,] 57 13 1 10 0 110
#> [163,] 58 10 0 10 1 150
#> [164,] 57 4 1 3 0 138
#> [165,] 57 11 0 180 1 150
#> [166,] 61 3 0 17 0 143
#> [167,] 56 14 0 45 0 130
#> [168,] 57 3 1 2 0 120
#> [169,] 58 19 1 13 1 140
#> [170,] 56 13 1 6 1 158
#> [171,] 56 18 1 11 1 165
#> [172,] 55 4 1 3 1 160
#> [173,] 58 11 0 172 1 135
#> [174,] 60 12 1 0 1 114
#> [175,] 55 9 1 7 1 135
#> [176,] 61 4 1 0 1 115
#> [177,] 59 11 1 8 1 190
#> [178,] 57 15 1 13 1 110
#> [179,] 59 5 1 2 0 182
#> [180,] 58 5 1 1 1 135
#> [181,] 59 10 0 180 0 160
#> [182,] 61 8 0 77 0 120
#> [183,] 61 13 0 13 0 210
#> [184,] 62 10 1 0 1 153
#> [185,] 62 7 1 2 1 180
#> [186,] 57 3 1 0 0 100
#> [187,] 61 28 1 7 0 133
#> [188,] 58 8 1 3 1 150
#> [189,] 61 7 0 7 1 150
#> [190,] 60 7 0 7 0 147
#> [191,] 61 6 0 6 0 134
#> [192,] 57 12 1 9 1 120
#> [193,] 62 4 1 0 0 160
#> [194,] 60 17 1 8 1 140
#> [195,] 58 2 0 30 0 202
#> [196,] 59 1 0 180 0 155
#> [197,] 63 6 0 28 1 120
#> [198,] 61 5 0 5 1 110
#> [199,] 57 18 1 9 1 93
#> [200,] 57 2 1 1 0 159
#> [201,] 62 17 1 10 1 180
#> [202,] 62 1 1 0 1 172
#> [203,] 58 7 0 180 1 150
#> [204,] 63 3 1 1 0 180
#> [205,] 61 7 0 180 0 135
#> [206,] 63 4 1 3 0 222
#> [207,] 62 3 0 180 1 105
#> [208,] 63 4 0 180 1 190
#> [209,] 63 15 1 10 1 126
#> [210,] 64 4 0 180 0 130
#> [211,] 59 8 0 180 1 140
#> [212,] 61 9 1 9 1 150
#> [213,] 58 9 1 9 0 110
#> [214,] 62 7 0 7 0 150
#> [215,] 59 1 0 22 1 162
#> [216,] 58 2 0 180 0 127
#> [217,] 59 4 0 180 0 196
#> [218,] 60 7 0 7 0 140
#> [219,] 59 5 1 1 0 148
#> [220,] 65 13 0 180 1 100
#> [221,] 63 1 0 1 0 162
#> [222,] 62 6 0 180 0 170
#> [223,] 61 15 1 13 0 170
#> [224,] 59 4 0 4 0 149
#> [225,] 60 3 0 3 0 168
#> [226,] 64 10 1 9 0 160
#> [227,] 62 6 0 6 0 120
#> [228,] 60 8 0 17 1 130
#> [229,] 61 6 1 1 1 117
#> [230,] 64 12 1 11 0 160
#> [231,] 66 1 1 0 1 120
#> [232,] 63 14 1 9 0 123
#> [233,] 65 36 1 11 0 140
#> [234,] 63 4 1 3 0 162
#> [235,] 61 10 1 2 1 194
#> [236,] 64 32 1 9 1 160
#> [237,] 63 7 0 180 0 120
#> [238,] 66 5 1 0 1 110
#> [239,] 65 8 1 0 0 168
#> [240,] 64 0 0 0 1 90
#> [241,] 61 12 1 11 0 154
#> [242,] 61 4 0 180 1 113
#> [243,] 65 3 0 180 1 190
#> [244,] 63 16 1 7 1 110
#> [245,] 64 7 0 180 1 120
#> [246,] 63 12 0 12 1 150
#> [247,] 65 3 1 0 1 80
#> [248,] 63 5 1 4 0 170
#> [249,] 62 13 1 11 0 180
#> [250,] 67 11 0 11 1 100
#> [251,] 66 16 1 11 1 169
#> [252,] 62 9 0 180 0 145
#> [253,] 61 15 1 10 0 130
#> [254,] 63 9 1 8 1 160
#> [255,] 63 3 1 2 0 120
#> [256,] 64 19 1 8 1 160
#> [257,] 67 6 0 180 1 170
#> [258,] 65 15 1 11 1 160
#> [259,] 68 5 1 4 1 150
#> [260,] 64 6 1 0 1 125
#> [261,] 64 14 1 13 1 150
#> [262,] 65 3 0 3 0 105
#> [263,] 64 0 0 0 1 148
#> [264,] 67 4 1 3 0 130
#> [265,] 66 6 1 0 1 140
#> [266,] 65 2 1 1 1 170
#> [267,] 63 7 1 0 0 162
#> [268,] 67 8 1 1 1 130
#> [269,] 63 10 0 16 1 160
#> [270,] 64 1 0 1 1 120
#> [271,] 68 18 0 180 1 260
#> [272,] 65 17 1 14 1 100
#> [273,] 63 8 1 1 1 162
#> [274,] 65 18 1 3 0 120
#> [275,] 63 1 1 0 1 155
#> [276,] 67 11 0 11 0 150
#> [277,] 68 11 0 180 0 160
#> [278,] 66 12 1 10 1 150
#> [279,] 65 15 1 12 1 150
#> [280,] 66 11 1 0 0 100
#> [281,] 65 4 1 2 1 145
#> [282,] 66 15 1 13 1 160
#> [283,] 65 11 1 6 0 130
#> [284,] 69 6 0 180 1 100
#> [285,] 63 8 0 180 1 120
#> [286,] 65 8 1 0 1 90
#> [287,] 66 3 0 3 1 138
#> [288,] 69 1 1 0 0 170
#> [289,] 67 1 0 180 1 160
#> [290,] 68 10 1 10 1 150
#> [291,] 67 2 0 180 0 184
#> [292,] 66 19 1 12 1 150
#> [293,] 64 4 0 179 0 160
#> [294,] 66 4 0 180 1 130
#> [295,] 64 4 0 180 1 140
#> [296,] 66 7 1 5 1 131
#> [297,] 66 4 0 180 0 177
#> [298,] 68 4 1 0 1 160
#> [299,] 69 4 1 3 1 150
#> [300,] 65 13 1 12 1 130
#> [301,] 69 17 1 10 0 140
#> [302,] 69 8 0 93 0 140
#> [303,] 65 1 0 1 1 120
#> [304,] 68 18 1 0 1 160
#> [305,] 65 6 0 101 1 115
#> [306,] 68 4 0 4 1 190
#> [307,] 71 3 0 5 0 112
#> [308,] 70 7 1 0 1 190
#> [309,] 68 7 0 150 0 210
#> [310,] 71 20 1 0 1 160
#> [311,] 67 2 0 180 0 128
#> [312,] 66 1 1 1 1 165
#> [313,] 70 14 0 171 0 166
#> [314,] 67 10 1 9 0 200
#> [315,] 67 6 1 4 0 130
#> [316,] 68 18 1 14 1 170
#> [317,] 69 0 0 0 1 148
#> [318,] 69 3 1 2 0 151
#> [319,] 65 14 1 13 1 150
#> [320,] 71 7 0 7 0 230
#> [321,] 69 5 0 5 1 142
#> [322,] 69 3 0 3 1 130
#> [323,] 70 22 1 13 0 103
#> [324,] 67 1 0 36 1 104
#> [325,] 69 8 1 5 1 195
#> [326,] 69 8 1 7 1 108
#> [327,] 67 3 0 180 0 110
#> [328,] 66 2 1 1 0 123
#> [329,] 69 19 0 180 0 130
#> [330,] 68 18 0 18 1 100
#> [331,] 67 14 0 172 1 140
#> [332,] 67 7 1 4 0 122
#> [333,] 69 4 1 3 0 132
#> [334,] 68 2 0 7 1 130
#> [335,] 69 8 1 2 0 121
#> [336,] 67 13 1 9 0 130
#> [337,] 70 3 0 123 0 130
#> [338,] 70 9 0 180 1 142
#> [339,] 72 5 1 4 0 170
#> [340,] 67 22 1 1 1 140
#> [341,] 68 3 0 19 0 135
#> [342,] 69 1 0 1 1 110
#> [343,] 67 1 0 1 1 60
#> [344,] 67 4 0 60 1 136
#> [345,] 67 8 1 0 1 130
#> [346,] 72 13 1 11 1 195
#> [347,] 68 10 1 8 1 160
#> [348,] 66 24 1 13 0 130
#> [349,] 72 30 1 0 1 145
#> [350,] 70 7 0 7 0 102
#> [351,] 68 7 1 2 0 135
#> [352,] 71 6 0 9 0 120
#> [353,] 69 10 1 6 1 120
#> [354,] 72 19 1 8 0 120
#> [355,] 72 12 1 10 0 170
#> [356,] 67 8 0 180 1 170
#> [357,] 67 5 1 0 1 147
#> [358,] 67 9 0 180 0 158
#> [359,] 73 13 0 152 1 130
#> [360,] 70 5 0 180 0 150
#> [361,] 72 2 0 2 1 100
#> [362,] 67 4 1 1 0 134
#> [363,] 71 1 0 173 1 188
#> [364,] 68 23 0 180 1 220
#> [365,] 70 3 0 180 0 121
#> [366,] 71 3 1 2 0 150
#> [367,] 72 5 0 28 0 120
#> [368,] 73 6 0 180 1 117
#> [369,] 69 16 1 10 1 140
#> [370,] 69 8 1 1 0 164
#> [371,] 72 16 1 1 1 130
#> [372,] 73 6 1 0 1 270
#> [373,] 72 8 1 1 1 150
#> [374,] 71 2 1 0 1 180
#> [375,] 73 7 0 7 1 140
#> [376,] 70 3 0 3 1 159
#> [377,] 73 4 0 180 1 154
#> [378,] 69 2 1 0 1 110
#> [379,] 71 15 1 11 0 165
#> [380,] 74 20 0 20 1 180
#> [381,] 74 0 1 0 1 90
#> [382,] 73 3 1 0 1 136
#> [383,] 70 5 1 0 1 190
#> [384,] 71 17 1 11 0 160
#> [385,] 71 3 1 2 1 190
#> [386,] 69 12 1 1 1 149
#> [387,] 70 26 1 11 1 120
#> [388,] 74 4 0 4 0 120
#> [389,] 73 4 0 58 1 160
#> [390,] 70 3 0 180 1 154
#> [391,] 73 6 0 180 0 110
#> [392,] 72 15 1 0 1 150
#> [393,] 71 7 1 2 0 143
#> [394,] 74 3 0 3 1 150
#> [395,] 73 17 1 11 0 140
#> [396,] 71 13 1 8 0 121
#> [397,] 70 4 1 0 1 140
#> [398,] 74 7 1 0 1 117
#> [399,] 70 8 0 8 0 120
#> [400,] 71 10 1 9 1 120
#> [401,] 75 1 0 1 0 133
#> [402,] 73 10 1 9 1 146
#> [403,] 72 10 1 9 1 160
#> [404,] 73 10 1 10 1 120
#> [405,] 74 15 1 9 1 179
#> [406,] 71 2 0 10 1 112
#> [407,] 75 9 1 7 0 140
#> [408,] 75 13 1 1 1 130
#> [409,] 71 4 0 4 0 134
#> [410,] 73 10 1 8 0 120
#> [411,] 70 7 1 4 0 184
#> [412,] 72 1 1 1 0 168
#> [413,] 73 10 0 180 0 162
#> [414,] 72 11 0 11 1 140
#> [415,] 73 5 1 3 1 112
#> [416,] 76 25 1 12 1 170
#> [417,] 73 12 1 12 1 140
#> [418,] 75 1 0 180 1 140
#> [419,] 72 4 1 0 1 197
#> [420,] 71 3 1 0 0 144
#> [421,] 73 5 0 180 0 126
#> [422,] 73 4 0 180 0 124
#> [423,] 76 3 1 0 1 120
#> [424,] 71 32 1 12 1 107
#> [425,] 72 3 0 180 0 160
#> [426,] 76 5 0 5 1 130
#> [427,] 77 11 0 11 1 150
#> [428,] 77 4 0 4 0 185
#> [429,] 75 3 1 1 0 180
#> [430,] 73 15 0 15 1 160
#> [431,] 73 10 1 10 0 124
#> [432,] 74 7 0 180 1 150
#> [433,] 76 1 0 180 0 114
#> [434,] 74 2 1 1 0 140
#> [435,] 74 19 1 4 1 200
#> [436,] 73 6 0 6 1 114
#> [437,] 74 2 0 180 0 190
#> [438,] 72 4 0 85 1 120
#> [439,] 76 13 1 10 0 110
#> [440,] 75 4 1 0 1 122
#> [441,] 75 7 0 7 0 190
#> [442,] 75 12 0 12 1 160
#> [443,] 74 8 1 0 1 105
#> [444,] 76 13 1 8 1 148
#> [445,] 75 4 1 2 1 188
#> [446,] 74 6 0 180 0 160
#> [447,] 76 4 0 4 1 155
#> [448,] 74 2 0 180 0 111
#> [449,] 76 44 1 10 0 105
#> [450,] 76 5 0 180 0 185
#> [451,] 74 10 1 0 1 135
#> [452,] 74 8 1 8 1 170
#> [453,] 75 9 0 180 1 140
#> [454,] 77 5 1 0 0 123
#> [455,] 77 12 1 9 1 100
#> [456,] 73 10 1 9 0 146
#> [457,] 77 12 0 180 0 130
#> [458,] 77 1 1 0 1 90
#> [459,] 76 12 1 11 1 120
#> [460,] 78 5 1 0 1 170
#> [461,] 73 7 1 0 0 174
#> [462,] 74 6 0 79 1 140
#> [463,] 75 3 1 1 1 171
#> [464,] 74 9 1 8 0 200
#> [465,] 79 10 1 8 0 190
#> [466,] 74 2 1 0 1 130
#> [467,] 78 18 0 18 1 144
#> [468,] 73 8 1 1 1 162
#> [469,] 74 2 0 180 0 100
#> [470,] 78 7 0 7 1 133
#> [471,] 74 15 0 180 1 172
#> [472,] 78 8 1 6 1 110
#> [473,] 74 7 0 7 0 161
#> [474,] 78 32 1 9 1 198
#> [475,] 79 6 0 180 0 170
#> [476,] 78 0 0 180 1 212
#> [477,] 78 13 1 5 0 130
#> [478,] 75 5 0 119 1 150
#> [479,] 75 12 1 1 1 120
#> [480,] 78 15 0 180 1 270
#> [481,] 80 8 0 8 1 120
#> [482,] 76 1 0 1 1 83
#> [483,] 79 4 0 80 0 145
#> [484,] 78 12 1 9 0 150
#> [485,] 75 4 1 0 0 212
#> [486,] 77 2 1 0 1 143
#> [487,] 78 10 0 180 1 130
#> [488,] 75 11 1 4 0 162
#> [489,] 76 7 0 29 1 150
#> [490,] 77 24 0 24 1 160
#> [491,] 79 8 0 32 1 120
#> [492,] 80 6 0 6 1 150
#> [493,] 78 6 1 0 1 240
#> [494,] 76 3 1 0 1 140
#> [495,] 78 11 1 1 1 140
#> [496,] 79 11 0 180 0 160
#> [497,] 79 2 1 0 1 121
#> [498,] 78 14 1 0 1 140
#> [499,] 81 1 0 1 0 130
#> [500,] 76 12 1 10 1 127
#> [501,] 75 2 1 1 1 204
#> [502,] 78 11 0 180 1 135
#> [503,] 76 1 0 1 1 140
#> [504,] 76 1 0 1 1 90
#> [505,] 78 7 1 0 1 110
#> [506,] 79 3 0 3 0 120
#> [507,] 77 7 0 180 1 170
#> [508,] 79 4 1 0 1 120
#> [509,] 81 1 0 180 0 120
#> [510,] 80 15 1 12 1 150
#> [511,] 77 9 1 4 0 141
#> [512,] 82 5 0 8 1 120
#> [513,] 80 40 1 0 1 138
#> [514,] 78 4 0 59 1 112
#> [515,] 80 17 1 12 0 100
#> [516,] 76 7 0 161 0 151
#> [517,] 80 15 1 0 1 90
#> [518,] 79 28 0 164 0 100
#> [519,] 80 9 0 118 1 186
#> [520,] 78 32 0 180 1 130
#> [521,] 79 1 0 37 1 140
#> [522,] 81 2 0 175 0 172
#> [523,] 78 7 0 7 1 147
#> [524,] 77 13 1 0 1 190
#> [525,] 78 4 0 180 0 175
#> [526,] 79 3 0 3 1 101
#> [527,] 76 1 0 166 0 131
#> [528,] 81 4 1 1 1 104
#> [529,] 78 20 1 0 1 109
#> [530,] 78 3 1 1 1 152
#> [531,] 80 2 1 1 0 168
#> [532,] 80 6 1 0 1 119
#> [533,] 80 5 0 5 1 130
#> [534,] 82 1 1 0 1 82
#> [535,] 79 10 0 180 1 150
#> [536,] 77 4 0 180 1 98
#> [537,] 81 1 0 108 0 129
#> [538,] 78 12 0 180 0 134
#> [539,] 82 21 1 2 0 155
#> [540,] 84 22 1 10 0 180
#> [541,] 79 4 0 4 1 121
#> [542,] 80 6 0 6 1 110
#> [543,] 83 9 1 5 1 170
#> [544,] 82 5 0 180 0 110
#> [545,] 83 5 0 180 0 148
#> [546,] 79 7 1 6 0 130
#> [547,] 83 4 0 103 0 97
#> [548,] 80 11 1 8 0 170
#> [549,] 79 4 0 4 1 183
#> [550,] 79 1 0 180 1 170
#> [551,] 81 15 0 180 1 140
#> [552,] 80 7 1 0 1 146
#> [553,] 84 5 1 1 1 85
#> [554,] 81 20 1 9 0 170
#> [555,] 83 8 0 8 0 115
#> [556,] 81 16 0 16 1 110
#> [557,] 80 6 1 0 1 150
#> [558,] 80 11 1 8 0 110
#> [559,] 81 8 0 180 0 146
#> [560,] 79 7 0 177 0 197
#> [561,] 79 0 1 0 1 96
#> [562,] 85 4 0 180 0 90
#> [563,] 81 2 1 1 0 198
#> [564,] 82 6 0 128 1 100
#> [565,] 84 4 0 167 0 198
#> [566,] 80 3 1 1 1 230
#> [567,] 81 1 0 1 1 150
#> [568,] 84 1 0 38 1 205
#> [569,] 81 4 0 90 1 138
#> [570,] 79 9 1 8 0 150
#> [571,] 85 3 1 2 1 160
#> [572,] 80 13 1 8 1 140
#> [573,] 84 4 0 89 1 129
#> [574,] 79 4 0 4 1 60
#> [575,] 83 1 0 1 1 100
#> [576,] 82 19 0 19 0 120
#> [577,] 83 9 0 180 0 198
#> [578,] 79 14 1 0 0 110
#> [579,] 83 3 0 114 0 98
#> [580,] 83 1 0 180 0 160
#> [581,] 84 15 1 13 1 110
#> [582,] 81 1 0 1 1 145
#> [583,] 81 12 0 12 1 163
#> [584,] 82 16 1 8 0 103
#> [585,] 81 4 0 4 0 160
#> [586,] 82 3 1 2 0 130
#> [587,] 82 15 1 0 0 183
#> [588,] 80 2 0 88 0 135
#> [589,] 83 7 0 126 0 135
#> [590,] 81 16 1 9 0 180
#> [591,] 82 9 0 180 1 134
#> [592,] 85 3 0 3 1 118
#> [593,] 81 4 0 180 0 160
#> [594,] 82 1 0 180 1 193
#> [595,] 83 4 0 4 0 130
#> [596,] 87 2 0 5 1 137
#> [597,] 86 12 1 0 1 132
#> [598,] 86 6 1 0 1 140
#> [599,] 84 16 0 70 1 150
#> [600,] 83 19 0 43 0 150
#> [601,] 84 3 1 2 0 125
#> [602,] 83 10 1 0 1 190
#> [603,] 86 2 0 180 1 169
#> [604,] 88 14 1 3 1 130
#> [605,] 83 13 1 12 0 170
#> [606,] 87 2 0 180 0 113
#> [607,] 86 4 0 38 1 122
#> [608,] 82 4 0 4 0 130
#> [609,] 85 3 0 3 1 113
#> [610,] 86 6 0 6 1 117
#> [611,] 84 13 0 62 1 100
#> [612,] 83 20 1 3 1 150
#> [613,] 85 22 0 22 1 184
#> [614,] 86 9 1 7 1 142
#> [615,] 88 3 0 115 0 110
#> [616,] 83 3 0 3 1 130
#> [617,] 87 8 0 8 1 157
#> [618,] 86 15 1 8 1 109
#> [619,] 88 4 0 4 0 86
#> [620,] 89 4 0 4 1 153
#> [621,] 89 5 0 119 1 140
#> [622,] 87 6 0 180 1 110
#> [623,] 87 1 0 1 0 170
#> [624,] 85 8 0 8 1 136
#> [625,] 87 15 1 9 1 138
#> [626,] 84 0 0 180 1 136
#> [627,] 89 10 0 46 1 170
#> [628,] 90 14 0 14 1 100
#> [629,] 88 1 0 1 0 135
#> [630,] 86 4 0 180 1 145
#> [631,] 91 8 0 8 0 100
#> [632,] 86 3 1 0 1 80
#> [633,] 88 7 0 24 0 119
#> [634,] 88 8 0 50 1 154
#> [635,] 87 6 0 126 1 168
#> [636,] 86 9 1 7 0 130
#> [637,] 90 4 1 0 0 121
#> [638,] 91 1 0 1 1 74
#> [639,] 87 5 0 36 1 150
#> [640,] 90 5 1 0 1 125
#> [641,] 89 3 1 1 1 160
#> [642,] 92 1 0 1 1 167
#> [643,] 91 3 0 33 1 137
#> [644,] 88 5 0 158 0 100
#> [645,] 89 12 1 0 1 130
#> [646,] 89 2 0 168 0 118
#> [647,] 91 5 0 169 1 176
#> [648,] 89 52 0 52 1 130
#> [649,] 89 4 0 4 1 159
#> [650,] 91 0 0 0 0 0
#> [651,] 89 14 0 180 1 84
#> [652,] 94 6 0 50 0 78
#> [653,] 90 1 0 1 1 118
#> [654,] 91 2 0 2 1 116
#> [655,] 93 8 0 179 1 110
#> [656,] 94 8 0 8 1 142
#> [657,] 92 4 0 76 1 149
#> [658,] 91 1 0 180 0 158
#> [659,] 90 16 0 16 1 106
#> [660,] 90 3 0 67 0 162
#> [661,] 96 3 0 12 1 97
#> [662,] 95 8 1 5 1 150
#> [663,] 94 3 0 26 1 144
#> [664,] 91 7 0 7 0 135
#> [665,] 93 0 1 0 1 122
#> [666,] 92 5 0 69 0 139
#> [667,] 92 2 0 2 0 112
#> [668,] 93 4 0 180 1 135
#> [669,] 96 3 1 0 1 104
#> [670,] 96 15 1 0 1 140
#>
#> $y
#> [1] 180.0+ 5.0+ 5.0+ 180.0+ 5.0+ 180.0+ 180.0+ 180.0+ 5.0+ 180.0+
#> [11] 180.0+ 180.0+ 180.0+ 180.0+ 2.0+ 5.0+ 2.0+ 180.0+ 180.0+ 180.0+
#> [21] 180.0+ 180.0+ 180.0+ 155.0+ 180.0+ 180.0+ 180.0+ 180.0+ 5.0+ 180.0+
#> [31] 180.0+ 180.0+ 180.0+ 150.0 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+
#> [41] 180.0+ 5.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+
#> [51] 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 7.0 180.0+ 180.0+ 180.0+
#> [61] 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 36.0 180.0+ 4.0+ 180.0+
#> [71] 180.0+ 77.0 180.0+ 180.0+ 5.0 180.0+ 180.0+ 180.0+ 4.0+ 85.0
#> [81] 180.0+ 166.0+ 99.0 180.0+ 16.0+ 180.0+ 6.0+ 180.0+ 180.0+ 174.0+
#> [91] 28.0 180.0+ 9.0+ 180.0+ 180.0+ 175.0+ 180.0+ 180.0+ 180.0+ 180.0+
#> [101] 180.0+ 16.0+ 15.0+ 180.0+ 180.0+ 180.0+ 12.0+ 134.0+ 180.0+ 8.0
#> [111] 2.0 3.0+ 180.0+ 180.0+ 180.0+ 140.0 180.0+ 1.0 165.0 180.0+
#> [121] 180.0+ 180.0+ 180.0+ 8.0+ 180.0+ 0.5 180.0+ 171.0+ 15.0 166.0+
#> [131] 5.0+ 180.0+ 180.0+ 5.0+ 180.0+ 4.0+ 9.0+ 1.0 180.0+ 180.0+
#> [141] 180.0+ 180.0+ 180.0+ 2.0 180.0+ 180.0+ 180.0+ 64.0 180.0+ 180.0+
#> [151] 180.0+ 9.0+ 180.0+ 0.5 180.0+ 161.0+ 171.0+ 180.0+ 180.0+ 3.0
#> [161] 180.0+ 180.0+ 10.0+ 180.0+ 180.0+ 17.0 45.0 3.0+ 19.0 180.0+
#> [171] 180.0+ 180.0+ 172.0+ 172.0+ 24.0 180.0+ 180.0+ 15.0 180.0+ 180.0+
#> [181] 180.0+ 77.0 13.0+ 180.0+ 180.0+ 180.0+ 94.0 180.0+ 7.0 7.0+
#> [191] 6.0 180.0+ 180.0+ 180.0+ 30.0 180.0+ 28.0 5.0 18.0 180.0+
#> [201] 180.0+ 1.0 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+
#> [211] 180.0+ 180.0+ 9.0 7.0+ 22.0 180.0+ 180.0+ 7.0+ 180.0+ 180.0+
#> [221] 1.0 180.0+ 180.0+ 4.0+ 3.0+ 167.0 6.0+ 17.0 180.0+ 12.0
#> [231] 180.0+ 14.0+ 36.0 180.0+ 88.0 180.0+ 180.0+ 180.0+ 180.0+ 0.5
#> [241] 12.0+ 180.0+ 180.0+ 180.0+ 180.0+ 12.0 3.0 180.0+ 180.0+ 11.0+
#> [251] 180.0+ 180.0+ 180.0+ 180.0+ 3.0+ 103.0 180.0+ 180.0+ 5.0+ 180.0+
#> [261] 14.0+ 3.0 0.5+ 180.0+ 180.0+ 175.0+ 7.0+ 8.0 16.0 1.0
#> [271] 180.0+ 180.0+ 180.0+ 123.0+ 1.0+ 11.0+ 180.0+ 80.0 15.0+ 180.0+
#> [281] 4.0+ 180.0+ 180.0+ 180.0+ 180.0+ 8.0+ 3.0 175.0 180.0+ 10.0
#> [291] 180.0+ 19.0+ 179.0+ 180.0+ 180.0+ 7.0+ 180.0+ 180.0+ 152.0+ 180.0+
#> [301] 180.0+ 93.0 1.0 18.0+ 101.0 4.0 5.0 7.0+ 150.0 180.0+
#> [311] 180.0+ 1.0 171.0 174.0+ 6.0 180.0+ 0.5 180.0+ 14.0+ 7.0+
#> [321] 5.0+ 3.0+ 180.0+ 36.0 180.0+ 8.0+ 180.0+ 2.0+ 180.0+ 18.0
#> [331] 172.0+ 7.0 180.0+ 7.0 8.0+ 13.0+ 123.0 180.0+ 180.0+ 51.0
#> [341] 19.0 1.0 1.0 60.0 180.0+ 132.0 10.0+ 180.0+ 162.0 7.0+
#> [351] 7.0+ 9.0 180.0+ 180.0+ 12.0 180.0+ 180.0+ 180.0+ 152.0 180.0+
#> [361] 2.0 76.0 173.0+ 180.0+ 180.0+ 180.0+ 28.0 180.0+ 16.0+ 180.0+
#> [371] 16.0+ 6.0 180.0+ 180.0+ 7.0+ 3.0+ 180.0+ 2.0 180.0+ 20.0
#> [381] 0.5 180.0+ 180.0+ 180.0+ 3.0 12.0 180.0+ 4.0+ 58.0 180.0+
#> [391] 180.0+ 180.0+ 180.0+ 3.0 180.0+ 175.0 180.0+ 180.0+ 8.0+ 179.0+
#> [401] 1.0 180.0+ 159.0 15.0 180.0+ 10.0 180.0+ 13.0 4.0+ 10.0
#> [411] 104.0+ 1.0 180.0+ 11.0 5.0 180.0+ 12.0 180.0+ 180.0+ 180.0+
#> [421] 180.0+ 180.0+ 180.0+ 177.0+ 180.0+ 5.0 11.0+ 4.0+ 180.0+ 15.0+
#> [431] 10.0 180.0+ 180.0+ 180.0+ 180.0+ 6.0 180.0+ 85.0 174.0+ 4.0
#> [441] 7.0 12.0 180.0+ 180.0+ 46.0 180.0+ 4.0 180.0+ 180.0+ 180.0+
#> [451] 180.0+ 8.0 180.0+ 5.0 180.0+ 180.0+ 180.0+ 1.0 12.0 180.0+
#> [461] 7.0+ 79.0 3.0 168.0+ 180.0+ 176.0+ 18.0 180.0+ 180.0+ 7.0
#> [471] 180.0+ 8.0+ 7.0 32.0 180.0+ 180.0+ 172.0 119.0 12.0 180.0+
#> [481] 8.0 1.0 80.0 180.0+ 4.0+ 2.0 180.0+ 152.0+ 29.0 24.0
#> [491] 32.0 6.0 180.0+ 3.0+ 180.0+ 180.0+ 180.0+ 180.0+ 1.0 180.0+
#> [501] 2.0+ 180.0+ 1.0 1.0 43.0 3.0 180.0+ 138.0 180.0+ 180.0+
#> [511] 71.0 8.0 40.0 59.0 17.0 161.0 180.0+ 164.0 118.0 180.0+
#> [521] 37.0 175.0+ 7.0+ 22.0 180.0+ 3.0 166.0+ 71.0 20.0+ 3.0+
#> [531] 10.0 6.0 5.0 1.0 180.0+ 180.0+ 108.0 180.0+ 180.0+ 180.0+
#> [541] 4.0 6.0 9.0+ 180.0+ 180.0+ 180.0+ 103.0 169.0 4.0 180.0+
#> [551] 180.0+ 7.0+ 180.0+ 20.0 8.0+ 16.0 180.0+ 180.0+ 180.0+ 177.0+
#> [561] 0.5 180.0+ 180.0+ 128.0 167.0 3.0+ 1.0 38.0 90.0 180.0+
#> [571] 180.0+ 180.0+ 89.0 4.0 1.0 19.0 180.0+ 180.0+ 114.0 180.0+
#> [581] 180.0+ 1.0 12.0 16.0+ 4.0+ 3.0 83.0 88.0 126.0 180.0+
#> [591] 180.0+ 3.0+ 180.0+ 180.0+ 4.0+ 5.0 180.0+ 6.0 70.0 43.0
#> [601] 180.0+ 180.0+ 180.0+ 14.0 13.0 180.0+ 38.0 4.0 3.0+ 6.0+
#> [611] 62.0 20.0 22.0 11.0 115.0 3.0+ 8.0+ 180.0+ 4.0 4.0
#> [621] 119.0 180.0+ 1.0+ 8.0 180.0+ 180.0+ 46.0 14.0 1.0+ 180.0+
#> [631] 8.0 3.0 24.0 50.0 126.0 180.0+ 4.0 1.0 36.0 89.0
#> [641] 3.0+ 1.0 33.0 158.0 180.0+ 168.0 169.0 52.0 4.0 0.5
#> [651] 180.0+ 50.0 1.0+ 2.0 179.0+ 8.0+ 76.0 180.0+ 16.0 67.0
#> [661] 12.0 8.0 26.0 7.0+ 0.5 69.0 2.0 180.0+ 3.0 15.0+
#>
#> $weights
#> NULL
#>
# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)
# Score the predictions
predictions$score()
#> surv.cindex
#> 0.8345998