Cross-Validated GLM with Elastic Net Regularization Survival Learner
mlr_learners_surv.cv_glmnet.Rd
Generalized linear models with elastic net regularization.
Calls glmnet::cv.glmnet()
from package glmnet.
Prediction types
This learner returns three prediction types:
lp
: a vector containing the linear predictors (relative risk scores), where each score corresponds to a specific test observation. Calculated usingglmnet::predict.cv.glmnet()
.crank
: same aslp
.distr
: a survival matrix in two dimensions, where observations are represented in rows and time points in columns. Calculated usingglmnet::survfit.cv.glmnet()
. Parametersstype
andctype
relate to howlp
predictions are transformed into survival predictions and are described insurvival::survfit.coxph()
. By default the Breslow estimator is used for computing the baseline hazard.
Meta Information
Task type: “surv”
Predict Types: “crank”, “distr”, “lp”
Feature Types: “logical”, “integer”, “numeric”
Required Packages: mlr3, mlr3proba, mlr3extralearners, glmnet
Parameters
Id | Type | Default | Levels | Range |
alignment | character | lambda | lambda, fraction | - |
alpha | numeric | 1 | \([0, 1]\) | |
big | numeric | 9.9e+35 | \((-\infty, \infty)\) | |
devmax | numeric | 0.999 | \([0, 1]\) | |
dfmax | integer | - | \([0, \infty)\) | |
eps | numeric | 1e-06 | \([0, 1]\) | |
epsnr | numeric | 1e-08 | \([0, 1]\) | |
exclude | untyped | - | - | |
exmx | numeric | 250 | \((-\infty, \infty)\) | |
fdev | numeric | 1e-05 | \([0, 1]\) | |
foldid | untyped | NULL | - | |
gamma | untyped | - | - | |
grouped | logical | TRUE | TRUE, FALSE | - |
intercept | logical | TRUE | TRUE, FALSE | - |
keep | logical | FALSE | TRUE, FALSE | - |
lambda | untyped | - | - | |
lambda.min.ratio | numeric | - | \([0, 1]\) | |
lower.limits | untyped | -Inf | - | |
maxit | integer | 100000 | \([1, \infty)\) | |
mnlam | integer | 5 | \([1, \infty)\) | |
mxit | integer | 100 | \([1, \infty)\) | |
mxitnr | integer | 25 | \([1, \infty)\) | |
nfolds | integer | 10 | \([3, \infty)\) | |
nlambda | integer | 100 | \([1, \infty)\) | |
use_pred_offset | logical | TRUE | TRUE, FALSE | - |
parallel | logical | FALSE | TRUE, FALSE | - |
penalty.factor | untyped | - | - | |
pmax | integer | - | \([0, \infty)\) | |
pmin | numeric | 1e-09 | \([0, 1]\) | |
prec | numeric | 1e-10 | \((-\infty, \infty)\) | |
predict.gamma | numeric | gamma.1se | \((-\infty, \infty)\) | |
relax | logical | FALSE | TRUE, FALSE | - |
s | numeric | lambda.1se | \([0, \infty)\) | |
standardize | logical | TRUE | TRUE, FALSE | - |
standardize.response | logical | FALSE | TRUE, FALSE | - |
thresh | numeric | 1e-07 | \([0, \infty)\) | |
trace.it | integer | 0 | \([0, 1]\) | |
type.gaussian | character | - | covariance, naive | - |
type.logistic | character | Newton | Newton, modified.Newton | - |
type.measure | character | deviance | deviance, C | - |
type.multinomial | character | ungrouped | ungrouped, grouped | - |
upper.limits | untyped | Inf | - | |
stype | integer | 2 | \([1, 2]\) | |
ctype | integer | - | \([1, 2]\) |
Offset
If a Task
contains a column with the offset
role, it is automatically
incorporated during training via the offset
argument in glmnet::glmnet()
.
During prediction, the offset column from the test set is used only if
use_pred_offset = TRUE
(default), passed via the newoffset
argument in glmnet::predict.coxnet()
.
Otherwise, if the user sets use_pred_offset = FALSE
, a zero offset is applied,
effectively disabling the offset adjustment during prediction.
References
Friedman J, Hastie T, Tibshirani R (2010). “Regularization Paths for Generalized Linear Models via Coordinate Descent.” Journal of Statistical Software, 33(1), 1–22. doi:10.18637/jss.v033.i01 .
See also
as.data.table(mlr_learners)
for a table of available Learners in the running session (depending on the loaded packages).Chapter in the mlr3book: https://mlr3book.mlr-org.com/basics.html#learners
mlr3learners for a selection of recommended learners.
mlr3cluster for unsupervised clustering learners.
mlr3pipelines to combine learners with pre- and postprocessing steps.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
Super classes
mlr3::Learner
-> mlr3proba::LearnerSurv
-> LearnerSurvCVGlmnet
Methods
Method selected_features()
Returns the set of selected features as reported by glmnet::predict.glmnet()
with type
set to "nonzero"
.
Arguments
lambda
(
numeric(1)
)
Customlambda
, defaults to the active lambda depending on parameter set.
Returns
(character()
) of feature names.
Examples
# Define the Learner
learner = mlr3::lrn("surv.cv_glmnet")
print(learner)
#>
#> ── <LearnerSurvCVGlmnet> (surv.cv_glmnet): Regularized Generalized Linear Model
#> • Model: -
#> • Parameters: use_pred_offset=TRUE
#> • Packages: mlr3, mlr3proba, mlr3extralearners, and glmnet
#> • Predict Types: [crank], distr, and lp
#> • Feature Types: logical, integer, and numeric
#> • Encapsulation: none (fallback: -)
#> • Properties: offset, selected_features, and weights
#> • Other settings: use_weights = 'use'
# Define a Task
task = mlr3::tsk("grace")
# Create train and test set
ids = mlr3::partition(task)
# Train the learner on the training ids
learner$train(task, row_ids = ids$train)
print(learner$model)
#> $model
#>
#> Call: (if (cv) glmnet::cv.glmnet else glmnet::glmnet)(x = data, y = target, family = "cox")
#>
#> Measure: Partial Likelihood Deviance
#>
#> Lambda Index Measure SE Nonzero
#> min 0.00324 45 2.640 0.1429 6
#> 1se 0.06351 13 2.772 0.1587 4
#>
#> $x
#> age los revasc revascdays stchange sysbp
#> [1,] 28 9 0 180 1 107
#> [2,] 32 5 1 0 1 121
#> [3,] 35 5 1 2 0 172
#> [4,] 35 2 0 180 0 121
#> [5,] 35 2 1 1 1 112
#> [6,] 38 13 1 0 1 161
#> [7,] 38 2 0 115 0 150
#> [8,] 36 1 0 180 1 155
#> [9,] 35 0 0 180 1 119
#> [10,] 38 12 1 8 1 120
#> [11,] 36 5 1 0 1 115
#> [12,] 33 6 1 1 1 115
#> [13,] 38 16 1 10 0 160
#> [14,] 38 12 1 11 1 92
#> [15,] 40 12 1 9 0 153
#> [16,] 42 3 1 1 1 130
#> [17,] 37 1 1 0 1 146
#> [18,] 42 2 0 180 1 100
#> [19,] 38 5 1 3 0 125
#> [20,] 42 2 0 2 0 140
#> [21,] 40 6 0 180 1 138
#> [22,] 40 11 1 10 1 120
#> [23,] 40 1 1 0 1 145
#> [24,] 43 4 1 0 1 130
#> [25,] 42 15 1 13 1 125
#> [26,] 40 3 1 1 0 170
#> [27,] 43 2 1 1 1 116
#> [28,] 44 5 1 1 0 170
#> [29,] 45 3 0 180 1 154
#> [30,] 44 3 0 180 0 141
#> [31,] 41 13 1 1 0 140
#> [32,] 45 9 1 7 0 110
#> [33,] 44 2 1 1 1 150
#> [34,] 43 2 0 180 1 140
#> [35,] 45 2 0 180 1 140
#> [36,] 46 15 0 180 0 120
#> [37,] 46 2 1 1 0 126
#> [38,] 47 4 1 3 0 118
#> [39,] 46 7 1 2 0 166
#> [40,] 43 29 0 180 1 180
#> [41,] 45 4 1 0 0 124
#> [42,] 43 10 0 180 0 185
#> [43,] 47 4 1 3 1 160
#> [44,] 43 3 1 0 1 124
#> [45,] 49 5 0 73 1 136
#> [46,] 45 5 0 5 0 141
#> [47,] 44 4 1 0 1 114
#> [48,] 47 2 0 180 0 108
#> [49,] 45 5 0 180 1 190
#> [50,] 46 5 1 3 0 130
#> [51,] 46 4 0 180 1 121
#> [52,] 46 15 0 180 1 120
#> [53,] 45 9 1 0 1 145
#> [54,] 48 12 1 11 0 200
#> [55,] 47 5 1 3 1 130
#> [56,] 47 9 1 6 0 170
#> [57,] 49 4 0 180 0 117
#> [58,] 48 2 1 0 0 184
#> [59,] 47 7 0 180 0 145
#> [60,] 50 4 1 1 0 125
#> [61,] 46 3 1 1 1 140
#> [62,] 50 7 0 180 1 110
#> [63,] 49 2 0 2 0 105
#> [64,] 51 1 0 1 1 145
#> [65,] 47 2 0 180 0 150
#> [66,] 50 4 0 4 1 100
#> [67,] 50 1 1 0 0 150
#> [68,] 49 7 1 4 1 90
#> [69,] 47 8 0 180 0 160
#> [70,] 47 6 0 180 1 162
#> [71,] 51 8 0 180 1 140
#> [72,] 52 2 0 180 0 155
#> [73,] 46 3 0 180 1 120
#> [74,] 46 1 1 1 0 145
#> [75,] 50 4 1 1 0 150
#> [76,] 53 8 0 36 1 160
#> [77,] 48 17 1 10 0 111
#> [78,] 52 4 1 4 0 152
#> [79,] 49 9 1 3 0 102
#> [80,] 53 5 0 180 1 140
#> [81,] 54 17 1 12 1 102
#> [82,] 53 7 1 0 0 199
#> [83,] 54 6 1 3 0 129
#> [84,] 50 2 0 5 1 106
#> [85,] 50 10 1 6 0 122
#> [86,] 50 14 1 13 0 170
#> [87,] 53 8 1 7 0 160
#> [88,] 48 3 1 2 0 150
#> [89,] 49 5 1 2 1 150
#> [90,] 53 4 0 4 0 140
#> [91,] 52 14 1 7 1 200
#> [92,] 48 6 0 180 0 160
#> [93,] 51 13 0 99 1 160
#> [94,] 54 9 1 0 1 138
#> [95,] 55 3 1 1 0 150
#> [96,] 54 23 1 10 0 131
#> [97,] 52 7 1 2 0 154
#> [98,] 55 6 1 2 1 114
#> [99,] 55 4 1 2 0 150
#> [100,] 52 4 0 180 1 180
#> [101,] 51 13 1 11 0 145
#> [102,] 50 5 1 4 1 150
#> [103,] 54 4 1 0 1 121
#> [104,] 52 4 0 180 0 183
#> [105,] 50 3 0 174 1 153
#> [106,] 49 1 0 1 1 110
#> [107,] 50 7 1 1 0 156
#> [108,] 53 9 0 9 1 95
#> [109,] 50 7 1 0 1 127
#> [110,] 56 4 1 1 1 130
#> [111,] 55 1 0 180 0 127
#> [112,] 55 2 0 2 0 145
#> [113,] 54 1 0 180 0 162
#> [114,] 56 3 0 180 1 193
#> [115,] 56 2 0 180 0 132
#> [116,] 55 5 1 4 1 120
#> [117,] 53 18 1 9 1 150
#> [118,] 54 3 0 180 1 180
#> [119,] 55 6 0 180 0 170
#> [120,] 52 16 0 16 0 152
#> [121,] 53 10 1 9 0 172
#> [122,] 53 15 0 15 1 90
#> [123,] 55 6 0 180 1 100
#> [124,] 55 6 1 5 1 138
#> [125,] 54 12 1 0 1 190
#> [126,] 55 2 0 134 1 140
#> [127,] 56 3 0 8 1 139
#> [128,] 55 1 0 2 0 130
#> [129,] 57 3 0 3 0 120
#> [130,] 54 7 1 2 0 129
#> [131,] 52 9 1 3 0 170
#> [132,] 54 2 1 1 1 176
#> [133,] 57 5 1 3 1 138
#> [134,] 57 1 0 1 1 100
#> [135,] 52 2 0 180 0 140
#> [136,] 55 11 1 7 0 104
#> [137,] 52 15 1 14 0 130
#> [138,] 56 14 1 11 0 130
#> [139,] 53 3 1 0 1 200
#> [140,] 57 10 0 180 1 170
#> [141,] 58 8 0 8 1 130
#> [142,] 54 5 0 180 1 108
#> [143,] 59 3 1 1 0 172
#> [144,] 57 4 0 180 1 119
#> [145,] 53 15 1 10 1 130
#> [146,] 54 17 1 8 1 227
#> [147,] 55 9 1 2 1 147
#> [148,] 56 5 0 5 1 150
#> [149,] 54 23 1 8 0 120
#> [150,] 57 4 1 2 1 185
#> [151,] 53 7 1 0 1 120
#> [152,] 57 11 1 10 1 129
#> [153,] 55 3 1 2 0 140
#> [154,] 55 5 0 5 1 131
#> [155,] 54 7 1 0 1 141
#> [156,] 59 15 1 10 0 140
#> [157,] 58 9 1 0 1 180
#> [158,] 55 5 1 0 0 140
#> [159,] 56 7 1 5 1 120
#> [160,] 55 2 0 2 0 106
#> [161,] 59 9 1 1 1 125
#> [162,] 57 1 0 180 0 148
#> [163,] 58 4 1 0 1 160
#> [164,] 57 5 0 180 1 130
#> [165,] 58 11 1 9 1 124
#> [166,] 55 5 1 0 1 160
#> [167,] 57 10 1 9 0 103
#> [168,] 59 6 1 0 1 140
#> [169,] 59 5 0 180 1 155
#> [170,] 59 4 1 0 1 152
#> [171,] 61 9 0 9 1 160
#> [172,] 60 0 1 0 1 80
#> [173,] 59 2 1 1 0 140
#> [174,] 58 14 1 6 0 190
#> [175,] 61 4 1 3 0 151
#> [176,] 61 9 1 8 0 150
#> [177,] 61 3 1 2 1 102
#> [178,] 61 20 1 13 0 130
#> [179,] 57 13 1 10 0 110
#> [180,] 58 10 0 10 1 150
#> [181,] 57 4 1 3 0 138
#> [182,] 57 11 0 180 1 150
#> [183,] 61 3 0 17 0 143
#> [184,] 56 14 0 45 0 130
#> [185,] 57 3 1 2 0 120
#> [186,] 56 13 1 6 1 158
#> [187,] 56 18 1 11 1 165
#> [188,] 59 9 1 0 1 80
#> [189,] 58 11 0 172 1 135
#> [190,] 60 12 1 0 1 114
#> [191,] 55 9 1 7 1 135
#> [192,] 61 4 1 0 1 115
#> [193,] 56 8 1 8 0 120
#> [194,] 61 13 1 12 1 130
#> [195,] 57 15 1 13 1 110
#> [196,] 59 5 1 2 0 182
#> [197,] 58 5 1 1 1 135
#> [198,] 59 10 0 180 0 160
#> [199,] 61 8 0 77 0 120
#> [200,] 62 10 1 0 1 153
#> [201,] 62 7 1 2 1 180
#> [202,] 58 8 1 3 1 150
#> [203,] 57 7 0 169 0 180
#> [204,] 59 13 1 2 0 198
#> [205,] 57 12 1 9 1 120
#> [206,] 62 4 1 0 0 160
#> [207,] 58 2 0 30 0 202
#> [208,] 59 1 0 180 0 155
#> [209,] 61 13 0 13 0 120
#> [210,] 61 5 0 5 1 160
#> [211,] 58 11 1 9 0 179
#> [212,] 57 2 1 1 0 159
#> [213,] 62 17 1 10 1 180
#> [214,] 63 3 1 1 0 180
#> [215,] 63 1 0 180 1 130
#> [216,] 61 7 0 180 0 135
#> [217,] 63 4 1 3 0 222
#> [218,] 62 3 0 180 1 105
#> [219,] 63 4 0 180 1 190
#> [220,] 63 15 1 10 1 126
#> [221,] 64 4 0 180 0 130
#> [222,] 60 18 1 13 0 132
#> [223,] 59 8 0 180 1 140
#> [224,] 61 9 1 9 1 150
#> [225,] 58 9 1 9 0 110
#> [226,] 59 1 0 22 1 162
#> [227,] 58 2 0 180 0 127
#> [228,] 65 13 0 180 1 100
#> [229,] 59 4 0 4 0 149
#> [230,] 60 3 0 3 0 168
#> [231,] 64 10 1 9 0 160
#> [232,] 62 6 0 6 0 120
#> [233,] 63 12 1 10 0 200
#> [234,] 59 10 0 180 1 130
#> [235,] 60 8 0 17 1 130
#> [236,] 64 12 1 11 0 160
#> [237,] 66 1 1 0 1 120
#> [238,] 64 6 1 0 1 140
#> [239,] 63 10 1 0 1 148
#> [240,] 63 14 1 9 0 123
#> [241,] 63 4 1 3 0 162
#> [242,] 61 10 1 2 1 194
#> [243,] 64 32 1 9 1 160
#> [244,] 63 12 1 9 0 114
#> [245,] 63 7 0 180 0 120
#> [246,] 66 5 1 0 1 110
#> [247,] 64 0 0 0 1 90
#> [248,] 60 6 0 180 0 130
#> [249,] 61 12 1 11 0 154
#> [250,] 64 9 0 180 0 150
#> [251,] 61 4 0 180 1 113
#> [252,] 65 3 0 180 1 190
#> [253,] 64 7 0 180 1 120
#> [254,] 66 6 1 1 1 130
#> [255,] 65 3 1 0 1 80
#> [256,] 63 2 1 1 0 180
#> [257,] 62 13 1 11 0 180
#> [258,] 64 2 0 2 0 201
#> [259,] 66 18 1 5 0 142
#> [260,] 66 16 1 11 1 169
#> [261,] 62 9 0 180 0 145
#> [262,] 63 9 1 8 1 160
#> [263,] 63 3 1 2 0 120
#> [264,] 63 2 1 0 0 140
#> [265,] 65 8 1 0 1 140
#> [266,] 67 6 0 180 1 170
#> [267,] 65 15 1 11 1 160
#> [268,] 68 5 1 4 1 150
#> [269,] 64 13 1 12 1 150
#> [270,] 64 6 1 0 1 125
#> [271,] 66 7 1 0 1 115
#> [272,] 66 13 1 0 0 118
#> [273,] 64 14 1 13 1 150
#> [274,] 65 3 0 3 0 105
#> [275,] 66 6 1 0 1 140
#> [276,] 65 2 1 1 1 170
#> [277,] 68 1 0 180 1 166
#> [278,] 63 7 1 0 0 162
#> [279,] 68 5 0 5 1 90
#> [280,] 63 10 0 16 1 160
#> [281,] 66 14 0 180 0 130
#> [282,] 64 1 0 1 1 120
#> [283,] 68 18 0 180 1 260
#> [284,] 65 17 1 14 1 100
#> [285,] 63 8 1 1 1 162
#> [286,] 65 18 1 3 0 120
#> [287,] 67 11 0 11 0 150
#> [288,] 68 11 0 180 0 160
#> [289,] 66 12 1 10 1 150
#> [290,] 65 15 1 12 1 150
#> [291,] 65 4 1 2 1 145
#> [292,] 69 12 0 15 1 140
#> [293,] 66 15 1 13 1 160
#> [294,] 63 2 0 180 0 150
#> [295,] 69 21 1 10 0 180
#> [296,] 66 9 1 8 0 130
#> [297,] 68 14 1 13 1 140
#> [298,] 66 3 0 3 1 138
#> [299,] 69 1 1 0 0 170
#> [300,] 67 1 0 180 1 160
#> [301,] 68 10 1 10 1 150
#> [302,] 67 7 1 4 1 130
#> [303,] 63 2 1 0 0 99
#> [304,] 65 6 0 6 0 80
#> [305,] 65 10 1 1 1 148
#> [306,] 66 19 1 12 1 150
#> [307,] 69 6 0 99 1 140
#> [308,] 65 4 1 1 0 130
#> [309,] 64 4 0 179 0 160
#> [310,] 70 15 1 12 1 132
#> [311,] 64 11 0 11 0 125
#> [312,] 64 4 0 180 1 140
#> [313,] 64 0 1 0 1 118
#> [314,] 67 2 0 18 0 131
#> [315,] 66 7 1 5 1 131
#> [316,] 66 4 0 180 0 177
#> [317,] 69 4 1 3 1 150
#> [318,] 65 13 1 12 1 130
#> [319,] 69 17 1 10 0 140
#> [320,] 69 8 0 93 0 140
#> [321,] 64 21 0 21 1 155
#> [322,] 66 6 0 180 0 140
#> [323,] 65 1 0 1 1 120
#> [324,] 68 18 1 0 1 160
#> [325,] 65 6 0 101 1 115
#> [326,] 71 3 0 5 0 112
#> [327,] 70 7 1 0 1 190
#> [328,] 68 7 0 150 0 210
#> [329,] 66 9 1 3 1 151
#> [330,] 70 4 1 0 1 180
#> [331,] 69 8 0 180 1 153
#> [332,] 70 14 0 171 0 166
#> [333,] 66 4 0 180 0 130
#> [334,] 67 10 1 9 0 200
#> [335,] 67 6 1 4 0 130
#> [336,] 68 18 1 14 1 170
#> [337,] 65 2 0 180 0 130
#> [338,] 68 7 1 0 1 150
#> [339,] 69 3 1 2 0 151
#> [340,] 67 14 1 13 0 130
#> [341,] 69 8 0 180 1 180
#> [342,] 66 2 0 2 1 228
#> [343,] 71 6 0 45 1 158
#> [344,] 69 5 0 5 1 142
#> [345,] 70 22 1 13 0 103
#> [346,] 67 5 0 5 0 130
#> [347,] 68 6 0 180 0 145
#> [348,] 69 6 1 4 1 174
#> [349,] 72 3 1 0 1 132
#> [350,] 72 7 0 7 1 110
#> [351,] 69 8 1 7 1 108
#> [352,] 67 3 0 180 0 110
#> [353,] 66 2 1 1 0 123
#> [354,] 68 18 0 18 1 100
#> [355,] 67 14 0 172 1 140
#> [356,] 66 2 0 180 0 130
#> [357,] 69 4 1 3 0 132
#> [358,] 68 2 0 7 1 130
#> [359,] 67 13 1 9 0 130
#> [360,] 70 9 0 180 1 142
#> [361,] 67 22 1 1 1 140
#> [362,] 67 12 1 8 0 120
#> [363,] 69 1 0 1 1 110
#> [364,] 67 4 0 60 1 136
#> [365,] 69 5 0 76 0 120
#> [366,] 72 13 1 11 1 195
#> [367,] 68 10 1 8 1 160
#> [368,] 66 24 1 13 0 130
#> [369,] 72 30 1 0 1 145
#> [370,] 70 7 0 7 0 102
#> [371,] 73 20 1 0 1 170
#> [372,] 71 6 0 9 0 120
#> [373,] 70 11 0 180 1 210
#> [374,] 72 19 1 8 0 120
#> [375,] 72 12 1 10 0 170
#> [376,] 67 8 0 180 1 170
#> [377,] 67 5 1 0 1 147
#> [378,] 73 13 0 152 1 130
#> [379,] 72 2 0 2 1 100
#> [380,] 67 4 1 1 0 134
#> [381,] 72 6 1 5 0 115
#> [382,] 71 1 0 173 1 188
#> [383,] 68 23 0 180 1 220
#> [384,] 70 3 0 180 0 121
#> [385,] 69 3 0 180 0 220
#> [386,] 71 3 1 2 0 150
#> [387,] 72 5 0 28 0 120
#> [388,] 73 6 0 180 1 117
#> [389,] 69 16 1 10 1 140
#> [390,] 69 8 1 1 0 164
#> [391,] 72 16 1 1 1 130
#> [392,] 70 4 0 180 0 180
#> [393,] 69 1 1 0 0 155
#> [394,] 73 6 1 0 1 270
#> [395,] 72 8 1 1 1 150
#> [396,] 71 2 1 0 1 180
#> [397,] 73 7 0 7 1 140
#> [398,] 70 13 1 9 0 100
#> [399,] 73 0 0 180 1 161
#> [400,] 69 2 1 0 1 110
#> [401,] 71 3 1 1 0 150
#> [402,] 68 9 0 180 1 120
#> [403,] 74 0 1 0 1 90
#> [404,] 73 3 1 0 1 136
#> [405,] 71 17 1 11 0 160
#> [406,] 71 8 1 7 0 149
#> [407,] 70 26 1 11 1 120
#> [408,] 72 5 1 3 1 160
#> [409,] 70 3 0 180 1 154
#> [410,] 73 6 0 180 0 110
#> [411,] 72 15 1 0 1 150
#> [412,] 71 7 1 2 0 143
#> [413,] 72 8 1 0 1 140
#> [414,] 73 17 1 11 0 140
#> [415,] 70 4 1 0 1 140
#> [416,] 72 10 1 8 1 153
#> [417,] 69 7 0 180 1 144
#> [418,] 72 15 1 13 0 156
#> [419,] 70 8 0 8 0 120
#> [420,] 71 10 1 9 1 120
#> [421,] 75 1 0 1 0 133
#> [422,] 75 2 1 1 0 145
#> [423,] 73 10 1 9 1 146
#> [424,] 73 10 1 10 1 120
#> [425,] 71 2 0 10 1 112
#> [426,] 75 9 1 7 0 140
#> [427,] 71 11 1 8 0 110
#> [428,] 71 4 0 4 0 134
#> [429,] 72 15 1 12 1 120
#> [430,] 73 10 1 8 0 120
#> [431,] 70 7 1 4 0 184
#> [432,] 72 1 1 1 0 168
#> [433,] 72 7 0 57 1 145
#> [434,] 73 10 0 180 0 162
#> [435,] 72 11 0 11 1 140
#> [436,] 73 5 1 3 1 112
#> [437,] 76 25 1 12 1 170
#> [438,] 72 2 0 180 0 120
#> [439,] 75 1 0 180 1 140
#> [440,] 72 4 1 0 1 197
#> [441,] 71 3 1 0 0 144
#> [442,] 73 5 0 180 0 126
#> [443,] 73 4 0 180 0 124
#> [444,] 76 3 1 0 1 120
#> [445,] 71 32 1 12 1 107
#> [446,] 72 5 0 180 0 154
#> [447,] 72 3 0 180 0 160
#> [448,] 76 5 0 5 1 130
#> [449,] 77 11 0 11 1 150
#> [450,] 77 4 0 4 0 185
#> [451,] 72 7 1 2 0 142
#> [452,] 73 10 1 10 0 124
#> [453,] 74 7 0 180 1 150
#> [454,] 76 1 0 180 0 114
#> [455,] 74 19 1 4 1 200
#> [456,] 75 23 1 14 1 110
#> [457,] 74 2 0 180 0 190
#> [458,] 72 4 0 85 1 120
#> [459,] 72 4 1 3 0 160
#> [460,] 73 4 1 3 1 125
#> [461,] 76 13 1 10 0 110
#> [462,] 75 4 1 0 1 122
#> [463,] 75 12 0 12 1 160
#> [464,] 74 8 1 0 1 105
#> [465,] 74 6 0 180 0 160
#> [466,] 76 4 0 4 1 155
#> [467,] 74 2 0 180 0 111
#> [468,] 73 1 0 52 1 105
#> [469,] 73 0 0 180 0 156
#> [470,] 78 12 1 11 1 160
#> [471,] 76 44 1 10 0 105
#> [472,] 76 5 1 0 1 167
#> [473,] 73 33 1 12 1 175
#> [474,] 73 10 1 9 0 146
#> [475,] 77 12 0 180 0 130
#> [476,] 77 1 1 0 1 90
#> [477,] 76 12 1 11 1 120
#> [478,] 74 6 0 79 1 140
#> [479,] 76 29 0 47 0 90
#> [480,] 73 8 1 1 1 162
#> [481,] 78 7 0 7 1 133
#> [482,] 74 15 0 180 1 172
#> [483,] 76 13 1 1 1 170
#> [484,] 79 6 0 180 0 170
#> [485,] 80 10 1 6 1 147
#> [486,] 78 0 0 180 1 212
#> [487,] 78 13 1 5 0 130
#> [488,] 78 15 0 180 1 270
#> [489,] 80 8 0 8 1 120
#> [490,] 75 13 1 6 0 150
#> [491,] 74 10 1 8 0 135
#> [492,] 76 1 0 1 1 83
#> [493,] 79 4 0 80 0 145
#> [494,] 78 2 1 1 0 130
#> [495,] 75 4 1 0 0 212
#> [496,] 77 2 1 0 1 143
#> [497,] 76 11 1 0 0 120
#> [498,] 75 11 1 4 0 162
#> [499,] 75 3 0 3 0 0
#> [500,] 76 7 0 29 1 150
#> [501,] 77 24 0 24 1 160
#> [502,] 79 8 0 32 1 120
#> [503,] 78 6 1 0 1 240
#> [504,] 78 11 1 1 1 140
#> [505,] 79 11 0 180 0 160
#> [506,] 79 2 1 0 1 121
#> [507,] 78 14 1 0 1 140
#> [508,] 81 1 0 1 0 130
#> [509,] 76 4 0 4 1 160
#> [510,] 79 4 0 4 1 125
#> [511,] 76 10 1 8 0 180
#> [512,] 77 6 0 6 1 107
#> [513,] 80 3 1 0 1 120
#> [514,] 75 2 1 1 1 204
#> [515,] 78 11 0 180 1 135
#> [516,] 77 31 1 3 1 161
#> [517,] 78 7 1 0 1 110
#> [518,] 77 6 0 6 1 144
#> [519,] 79 4 1 0 1 120
#> [520,] 81 1 0 180 0 120
#> [521,] 80 15 1 12 1 150
#> [522,] 82 5 0 8 1 120
#> [523,] 80 40 1 0 1 138
#> [524,] 80 17 1 12 0 100
#> [525,] 76 7 0 161 0 151
#> [526,] 81 4 1 2 1 126
#> [527,] 79 28 0 164 0 100
#> [528,] 80 9 0 118 1 186
#> [529,] 80 6 0 173 1 160
#> [530,] 81 2 0 175 0 172
#> [531,] 78 15 0 15 0 165
#> [532,] 78 26 1 5 0 194
#> [533,] 76 1 0 166 0 131
#> [534,] 80 1 0 1 0 100
#> [535,] 78 3 1 1 1 152
#> [536,] 77 10 1 8 1 130
#> [537,] 80 2 1 1 0 168
#> [538,] 79 6 0 6 0 152
#> [539,] 80 6 1 0 1 119
#> [540,] 78 2 0 180 0 148
#> [541,] 82 1 1 0 1 82
#> [542,] 79 10 0 180 1 150
#> [543,] 77 4 0 180 1 98
#> [544,] 81 1 0 108 0 129
#> [545,] 78 12 0 180 0 134
#> [546,] 82 21 1 2 0 155
#> [547,] 80 6 0 6 1 110
#> [548,] 83 9 1 5 1 170
#> [549,] 82 5 0 180 0 110
#> [550,] 83 5 0 180 0 148
#> [551,] 83 4 0 103 0 97
#> [552,] 81 11 1 8 0 160
#> [553,] 80 11 1 8 0 170
#> [554,] 78 9 1 4 1 120
#> [555,] 82 8 1 1 0 128
#> [556,] 79 1 0 180 1 170
#> [557,] 84 5 1 1 1 85
#> [558,] 81 20 1 9 0 170
#> [559,] 83 8 0 8 0 115
#> [560,] 81 16 0 16 1 110
#> [561,] 80 11 1 8 0 110
#> [562,] 80 8 1 7 0 160
#> [563,] 79 7 0 177 0 197
#> [564,] 79 0 1 0 1 96
#> [565,] 85 4 0 180 0 90
#> [566,] 83 2 0 2 1 155
#> [567,] 82 6 0 128 1 100
#> [568,] 84 4 0 167 0 198
#> [569,] 80 3 1 1 1 230
#> [570,] 82 23 1 0 0 110
#> [571,] 84 4 0 4 1 85
#> [572,] 81 1 0 1 1 150
#> [573,] 81 4 0 90 1 138
#> [574,] 79 9 1 8 0 150
#> [575,] 85 3 1 2 1 160
#> [576,] 80 13 1 8 1 140
#> [577,] 84 4 0 89 1 129
#> [578,] 80 2 1 0 1 130
#> [579,] 79 4 0 4 1 60
#> [580,] 82 19 0 19 0 120
#> [581,] 80 30 1 13 0 220
#> [582,] 83 9 0 180 0 198
#> [583,] 81 14 1 12 1 128
#> [584,] 83 2 0 154 0 130
#> [585,] 82 0 0 2 1 100
#> [586,] 85 9 1 6 1 160
#> [587,] 83 1 0 180 0 160
#> [588,] 81 4 0 4 0 175
#> [589,] 84 15 1 13 1 110
#> [590,] 81 1 0 1 1 145
#> [591,] 81 12 0 12 1 163
#> [592,] 82 16 1 8 0 103
#> [593,] 81 4 0 4 0 160
#> [594,] 86 12 0 180 1 120
#> [595,] 83 12 1 2 1 170
#> [596,] 81 19 1 14 0 120
#> [597,] 82 3 1 2 0 130
#> [598,] 82 15 1 0 0 183
#> [599,] 80 2 0 88 0 135
#> [600,] 81 16 1 9 0 180
#> [601,] 86 3 0 3 1 140
#> [602,] 84 3 0 180 1 120
#> [603,] 85 3 0 3 1 118
#> [604,] 81 4 0 180 0 160
#> [605,] 83 4 0 4 0 130
#> [606,] 87 2 0 5 1 137
#> [607,] 86 12 1 0 1 132
#> [608,] 84 3 1 2 0 125
#> [609,] 83 10 1 0 1 190
#> [610,] 86 2 0 180 1 169
#> [611,] 88 14 1 3 1 130
#> [612,] 84 3 0 3 1 121
#> [613,] 83 13 1 12 0 170
#> [614,] 84 3 0 180 1 170
#> [615,] 86 4 0 38 1 122
#> [616,] 82 4 0 4 0 130
#> [617,] 86 13 0 177 0 163
#> [618,] 84 13 0 62 1 100
#> [619,] 88 4 0 4 0 100
#> [620,] 83 20 1 3 1 150
#> [621,] 88 4 0 4 1 115
#> [622,] 85 22 0 22 1 184
#> [623,] 86 9 1 7 1 142
#> [624,] 87 2 0 180 1 130
#> [625,] 83 3 0 3 1 130
#> [626,] 87 8 0 8 1 157
#> [627,] 88 4 0 4 0 86
#> [628,] 85 8 0 8 1 136
#> [629,] 84 2 0 110 1 174
#> [630,] 87 15 1 9 1 138
#> [631,] 84 0 0 180 1 136
#> [632,] 90 14 0 14 1 100
#> [633,] 88 1 0 1 0 135
#> [634,] 86 4 0 180 1 145
#> [635,] 87 2 0 180 0 160
#> [636,] 87 6 1 0 0 125
#> [637,] 88 7 0 24 0 119
#> [638,] 88 8 0 50 1 154
#> [639,] 90 11 1 10 1 186
#> [640,] 87 6 0 126 1 168
#> [641,] 86 10 0 180 1 137
#> [642,] 86 9 1 7 0 130
#> [643,] 90 4 1 0 0 121
#> [644,] 87 43 0 178 1 130
#> [645,] 87 5 0 36 1 150
#> [646,] 90 5 1 0 1 125
#> [647,] 88 3 1 2 0 159
#> [648,] 89 3 1 1 1 160
#> [649,] 92 1 0 1 1 167
#> [650,] 87 7 0 74 1 105
#> [651,] 89 2 0 168 0 118
#> [652,] 91 5 0 169 1 176
#> [653,] 89 52 0 52 1 130
#> [654,] 89 14 0 180 1 84
#> [655,] 90 18 0 180 0 188
#> [656,] 91 4 1 0 1 120
#> [657,] 90 19 1 11 1 129
#> [658,] 94 6 0 50 0 78
#> [659,] 91 2 0 2 1 116
#> [660,] 92 4 0 76 1 149
#> [661,] 90 16 0 16 1 106
#> [662,] 90 3 0 67 0 162
#> [663,] 95 8 1 5 1 150
#> [664,] 91 7 0 7 0 135
#> [665,] 93 0 1 0 1 122
#> [666,] 92 5 0 69 0 139
#> [667,] 92 2 0 2 0 112
#> [668,] 93 4 0 180 1 135
#> [669,] 96 3 1 0 1 104
#> [670,] 96 15 1 0 1 140
#>
#> $y
#> [1] 180.0+ 5.0+ 5.0+ 180.0+ 2.0+ 180.0+ 115.0 180.0+ 180.0+ 12.0
#> [11] 5.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 5.0+ 2.0+
#> [21] 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 2.0+ 155.0+ 180.0+ 180.0+
#> [31] 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+
#> [41] 180.0+ 180.0+ 180.0+ 180.0+ 73.0 5.0+ 180.0+ 180.0+ 180.0+ 5.0+
#> [51] 180.0+ 180.0+ 177.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+
#> [61] 180.0+ 180.0+ 2.0 1.0 180.0+ 4.0+ 180.0+ 180.0+ 180.0+ 180.0+
#> [71] 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 36.0 88.0+ 4.0+ 180.0+ 180.0+
#> [81] 180.0+ 180.0+ 180.0+ 5.0 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 4.0+
#> [91] 85.0 180.0+ 99.0 180.0+ 180.0+ 152.0+ 7.0+ 6.0+ 180.0+ 180.0+
#> [101] 13.0+ 171.0+ 180.0+ 180.0+ 174.0+ 1.0 180.0+ 9.0+ 180.0+ 180.0+
#> [111] 180.0+ 2.0 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 16.0+
#> [121] 180.0+ 15.0+ 180.0+ 180.0+ 12.0+ 134.0+ 8.0 2.0 3.0+ 180.0+
#> [131] 180.0+ 180.0+ 140.0 1.0 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+
#> [141] 8.0+ 180.0+ 180.0+ 180.0+ 180.0+ 171.0+ 15.0 5.0+ 180.0+ 4.0+
#> [151] 180.0+ 180.0+ 180.0+ 5.0+ 180.0+ 180.0+ 9.0+ 180.0+ 180.0+ 2.0+
#> [161] 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 64.0 180.0+ 180.0+
#> [171] 9.0+ 0.5 180.0+ 171.0+ 180.0+ 180.0+ 3.0 180.0+ 180.0+ 10.0+
#> [181] 180.0+ 180.0+ 17.0 45.0 3.0+ 180.0+ 180.0+ 9.0+ 172.0+ 172.0+
#> [191] 24.0 180.0+ 8.0 180.0+ 15.0 180.0+ 180.0+ 180.0+ 77.0 180.0+
#> [201] 180.0+ 180.0+ 169.0 180.0+ 180.0+ 180.0+ 30.0 180.0+ 13.0+ 5.0+
#> [211] 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+
#> [221] 180.0+ 180.0+ 180.0+ 180.0+ 9.0 22.0 180.0+ 180.0+ 4.0+ 3.0+
#> [231] 167.0 6.0+ 180.0+ 180.0+ 17.0 12.0 180.0+ 180.0+ 180.0+ 14.0+
#> [241] 180.0+ 88.0 180.0+ 12.0 180.0+ 180.0+ 0.5 180.0+ 12.0+ 180.0+
#> [251] 180.0+ 180.0+ 180.0+ 180.0+ 3.0 180.0+ 180.0+ 2.0+ 18.0+ 180.0+
#> [261] 180.0+ 180.0+ 3.0+ 2.0+ 15.0 180.0+ 180.0+ 5.0+ 13.0 180.0+
#> [271] 179.0+ 166.0+ 14.0+ 3.0 180.0+ 175.0+ 180.0+ 7.0+ 5.0 16.0
#> [281] 180.0+ 1.0 180.0+ 180.0+ 180.0+ 123.0+ 11.0+ 180.0+ 80.0 15.0+
#> [291] 4.0+ 15.0 180.0+ 180.0+ 174.0+ 180.0+ 180.0+ 3.0 175.0 180.0+
#> [301] 10.0 180.0+ 180.0+ 6.0 180.0+ 19.0+ 99.0 180.0+ 179.0+ 180.0+
#> [311] 11.0+ 180.0+ 0.5 18.0 7.0+ 180.0+ 152.0+ 180.0+ 180.0+ 93.0
#> [321] 21.0+ 180.0+ 1.0 18.0+ 101.0 5.0 7.0+ 150.0 180.0+ 180.0+
#> [331] 180.0+ 171.0 180.0+ 174.0+ 6.0 180.0+ 180.0+ 180.0+ 180.0+ 180.0+
#> [341] 180.0+ 2.0 45.0 5.0+ 180.0+ 5.0+ 180.0+ 97.0 180.0+ 7.0
#> [351] 8.0+ 180.0+ 2.0+ 18.0 172.0+ 180.0+ 180.0+ 7.0 13.0+ 180.0+
#> [361] 51.0 180.0+ 1.0 60.0 76.0 132.0 10.0+ 180.0+ 162.0 7.0+
#> [371] 124.0 9.0 180.0+ 180.0+ 12.0 180.0+ 180.0+ 152.0 2.0 76.0
#> [381] 180.0+ 173.0+ 180.0+ 180.0+ 180.0+ 180.0+ 28.0 180.0+ 16.0+ 180.0+
#> [391] 16.0+ 180.0+ 180.0+ 6.0 180.0+ 180.0+ 7.0+ 13.0+ 180.0+ 2.0
#> [401] 3.0+ 180.0+ 0.5 180.0+ 180.0+ 8.0 180.0+ 180.0+ 180.0+ 180.0+
#> [411] 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 10.0+ 180.0+ 180.0+ 8.0+ 179.0+
#> [421] 1.0 180.0+ 180.0+ 15.0 10.0 180.0+ 180.0+ 4.0+ 180.0+ 10.0
#> [431] 104.0+ 1.0 57.0 180.0+ 11.0 5.0 180.0+ 180.0+ 180.0+ 180.0+
#> [441] 180.0+ 180.0+ 180.0+ 180.0+ 177.0+ 180.0+ 180.0+ 5.0 11.0+ 4.0+
#> [451] 7.0 10.0 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 85.0 180.0+ 180.0+
#> [461] 174.0+ 4.0 12.0 180.0+ 180.0+ 4.0 180.0+ 52.0 180.0+ 12.0
#> [471] 180.0+ 180.0+ 33.0 180.0+ 180.0+ 1.0 12.0 79.0 47.0 180.0+
#> [481] 7.0 180.0+ 180.0+ 180.0+ 10.0 180.0+ 172.0 180.0+ 8.0 180.0+
#> [491] 180.0+ 1.0 80.0 180.0+ 4.0+ 2.0 11.0 152.0+ 3.0 29.0
#> [501] 24.0 32.0 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 1.0 4.0 4.0
#> [511] 10.0+ 6.0 3.0+ 2.0+ 180.0+ 171.0 43.0 6.0 138.0 180.0+
#> [521] 180.0+ 8.0 40.0 17.0 161.0 93.0 164.0 118.0 173.0 175.0+
#> [531] 15.0+ 171.0+ 166.0+ 1.0 3.0+ 10.0 10.0 6.0+ 6.0 180.0+
#> [541] 1.0 180.0+ 180.0+ 108.0 180.0+ 180.0+ 6.0 9.0+ 180.0+ 180.0+
#> [551] 103.0 180.0+ 169.0 180.0+ 180.0+ 180.0+ 180.0+ 20.0 8.0+ 16.0
#> [561] 180.0+ 180.0+ 177.0+ 0.5 180.0+ 2.0 128.0 167.0 3.0+ 62.0
#> [571] 4.0 1.0 90.0 180.0+ 180.0+ 180.0+ 89.0 180.0+ 4.0 19.0
#> [581] 30.0 180.0+ 180.0+ 154.0 2.0 180.0+ 180.0+ 4.0+ 180.0+ 1.0
#> [591] 12.0 16.0+ 4.0+ 180.0+ 77.0 180.0+ 3.0 83.0 88.0 180.0+
#> [601] 3.0 180.0+ 3.0+ 180.0+ 4.0+ 5.0 180.0+ 180.0+ 180.0+ 180.0+
#> [611] 14.0 3.0 13.0 180.0+ 38.0 4.0 177.0 62.0 4.0+ 20.0
#> [621] 4.0 22.0 11.0 180.0+ 3.0+ 8.0+ 4.0 8.0 110.0 180.0+
#> [631] 180.0+ 14.0 1.0+ 180.0+ 180.0+ 25.0 24.0 50.0 11.0 126.0
#> [641] 180.0+ 180.0+ 4.0 178.0+ 36.0 89.0 75.0 3.0+ 1.0 74.0
#> [651] 168.0 169.0 52.0 180.0+ 180.0+ 4.0 180.0+ 50.0 2.0 76.0
#> [661] 16.0 67.0 8.0 7.0+ 0.5 69.0 2.0 180.0+ 3.0 15.0+
#>
#> $weights
#> NULL
#>
#> $offset
#> NULL
#>
# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)
# Score the predictions
predictions$score()
#> surv.cindex
#> 0.8100747