Skip to contents

Generalized linear models with elastic net regularization. Calls glmnet::cv.glmnet() from package glmnet.

Initial parameter values

  • family is set to "cox" and cannot be changed.

Prediction types

This learner returns three prediction types:

  1. lp: a vector containing the linear predictors (relative risk scores), where each score corresponds to a specific test observation. Calculated using glmnet::predict.cv.glmnet().

  2. crank: same as lp.

  3. distr: a survival matrix in two dimensions, where observations are represented in rows and time points in columns. Calculated using glmnet::survfit.cv.glmnet(). Parameters stype and ctype relate to how lp predictions are transformed into survival predictions and are described in survival::survfit.coxph(). By default the Breslow estimator is used for computing the baseline hazard.

Dictionary

This Learner can be instantiated via lrn():

lrn("surv.cv_glmnet")

Meta Information

  • Task type: “surv”

  • Predict Types: “crank”, “distr”, “lp”

  • Feature Types: “logical”, “integer”, “numeric”

  • Required Packages: mlr3, mlr3proba, mlr3extralearners, glmnet

Parameters

IdTypeDefaultLevelsRange
alignmentcharacterlambdalambda, fraction-
alphanumeric1\([0, 1]\)
bignumeric9.9e+35\((-\infty, \infty)\)
devmaxnumeric0.999\([0, 1]\)
dfmaxinteger-\([0, \infty)\)
epsnumeric1e-06\([0, 1]\)
epsnrnumeric1e-08\([0, 1]\)
excludeuntyped--
exmxnumeric250\((-\infty, \infty)\)
fdevnumeric1e-05\([0, 1]\)
foldiduntypedNULL-
gammauntyped--
groupedlogicalTRUETRUE, FALSE-
interceptlogicalTRUETRUE, FALSE-
keeplogicalFALSETRUE, FALSE-
lambdauntyped--
lambda.min.rationumeric-\([0, 1]\)
lower.limitsuntyped-Inf-
maxitinteger100000\([1, \infty)\)
mnlaminteger5\([1, \infty)\)
mxitinteger100\([1, \infty)\)
mxitnrinteger25\([1, \infty)\)
nfoldsinteger10\([3, \infty)\)
nlambdainteger100\([1, \infty)\)
offsetuntypedNULL-
newoffsetuntyped--
parallellogicalFALSETRUE, FALSE-
penalty.factoruntyped--
pmaxinteger-\([0, \infty)\)
pminnumeric1e-09\([0, 1]\)
precnumeric1e-10\((-\infty, \infty)\)
predict.gammanumericgamma.1se\((-\infty, \infty)\)
relaxlogicalFALSETRUE, FALSE-
snumericlambda.1se\([0, \infty)\)
standardizelogicalTRUETRUE, FALSE-
standardize.responselogicalFALSETRUE, FALSE-
threshnumeric1e-07\([0, \infty)\)
trace.itinteger0\([0, 1]\)
type.gaussiancharacter-covariance, naive-
type.logisticcharacterNewtonNewton, modified.Newton-
type.measurecharacterdeviancedeviance, C-
type.multinomialcharacterungroupedungrouped, grouped-
upper.limitsuntypedInf-
stypeinteger2\([1, 2]\)
ctypeinteger-\([1, 2]\)

References

Friedman J, Hastie T, Tibshirani R (2010). “Regularization Paths for Generalized Linear Models via Coordinate Descent.” Journal of Statistical Software, 33(1), 1–22. doi:10.18637/jss.v033.i01 .

See also

Author

be-marc

Super classes

mlr3::Learner -> mlr3proba::LearnerSurv -> LearnerSurvCVGlmnet

Methods

Inherited methods


Method new()

Creates a new instance of this R6 class.

Usage


Method selected_features()

Returns the set of selected features as reported by glmnet::predict.glmnet() with type set to "nonzero".

Usage

LearnerSurvCVGlmnet$selected_features(lambda = NULL)

Arguments

lambda

(numeric(1))
Custom lambda, defaults to the active lambda depending on parameter set.

Returns

(character()) of feature names.


Method clone()

The objects of this class are cloneable with this method.

Usage

LearnerSurvCVGlmnet$clone(deep = FALSE)

Arguments

deep

Whether to make a deep clone.

Examples

# Define the Learner
learner = mlr3::lrn("surv.cv_glmnet")
print(learner)
#> <LearnerSurvCVGlmnet:surv.cv_glmnet>: Regularized Generalized Linear Model
#> * Model: -
#> * Parameters: list()
#> * Packages: mlr3, mlr3proba, mlr3extralearners, glmnet
#> * Predict Types:  [crank], distr, lp
#> * Feature Types: logical, integer, numeric
#> * Properties: selected_features, weights

# Define a Task
task = mlr3::tsk("grace")

# Create train and test set
ids = mlr3::partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)
#> $model
#> 
#> Call:  (if (cv) glmnet::cv.glmnet else glmnet::glmnet)(x = data, y = target,      family = "cox") 
#> 
#> Measure: Partial Likelihood Deviance 
#> 
#>      Lambda Index Measure     SE Nonzero
#> min 0.00306    45   8.659 0.1904       6
#> 1se 0.03767    18   8.823 0.1889       5
#> 
#> $x
#>        age los revasc revascdays stchange sysbp
#>   [1,]  28   9      0        180        1   107
#>   [2,]  33   2      0          2        0   150
#>   [3,]  35  10      1          9        0   106
#>   [4,]  34   5      0          5        0   120
#>   [5,]  35   2      0        180        0   121
#>   [6,]  35   2      1          1        1   112
#>   [7,]  38  13      1          0        1   161
#>   [8,]  38   2      0        115        0   150
#>   [9,]  35   0      0        180        1   119
#>  [10,]  36   5      1          0        1   115
#>  [11,]  33   6      1          1        1   115
#>  [12,]  38  16      1         10        0   160
#>  [13,]  38  12      1         11        1    92
#>  [14,]  42   3      1          1        1   130
#>  [15,]  40   2      1          1        1   148
#>  [16,]  42   2      0        180        1   100
#>  [17,]  42   2      0          2        0   140
#>  [18,]  42   2      0        180        0   100
#>  [19,]  41   2      1          1        0   166
#>  [20,]  40   1      1          0        1   145
#>  [21,]  43   4      1          0        1   130
#>  [22,]  42   4      0        180        0   162
#>  [23,]  40   3      1          1        0   170
#>  [24,]  42  12      1         10        1   170
#>  [25,]  43   2      1          1        1   116
#>  [26,]  42   2      0        180        1   124
#>  [27,]  45   9      1          7        0   110
#>  [28,]  45   6      0        180        1   170
#>  [29,]  41   5      1          4        1   141
#>  [30,]  43   2      0        180        1   140
#>  [31,]  45   2      0        180        1   140
#>  [32,]  46  15      0        180        0   120
#>  [33,]  46   2      1          1        0   126
#>  [34,]  47   4      1          3        0   118
#>  [35,]  48  15      0        180        1   160
#>  [36,]  44   3      1          0        1   180
#>  [37,]  46   7      1          2        0   166
#>  [38,]  45   4      1          0        0   124
#>  [39,]  47   6      1          0        1   116
#>  [40,]  47   4      1          3        1   160
#>  [41,]  43   3      1          0        1   124
#>  [42,]  45   8      1          0        1   117
#>  [43,]  49   5      0         73        1   136
#>  [44,]  45   5      0          5        0   141
#>  [45,]  46   2      1          1        1   122
#>  [46,]  44   4      1          0        1   114
#>  [47,]  45   5      0        180        1   190
#>  [48,]  46   5      1          3        0   130
#>  [49,]  46   4      0        180        1   121
#>  [50,]  44   2      0        180        0   142
#>  [51,]  45   9      1          0        1   145
#>  [52,]  47   3      1          1        1   120
#>  [53,]  48   3      0        180        0   154
#>  [54,]  48  12      1         11        0   200
#>  [55,]  47   5      1          3        1   130
#>  [56,]  46   3      1          0        1   119
#>  [57,]  49   4      0        180        0   117
#>  [58,]  48   2      1          0        0   184
#>  [59,]  47   7      0        180        0   145
#>  [60,]  50   4      1          1        0   125
#>  [61,]  50   6      1          2        1   140
#>  [62,]  49   2      0          2        0   105
#>  [63,]  51   1      0          1        1   145
#>  [64,]  49  15      1         11        1   160
#>  [65,]  47   2      0        180        0   150
#>  [66,]  49  23      0        179        1   112
#>  [67,]  46   6      1          0        1   156
#>  [68,]  52   2      0        180        1   170
#>  [69,]  50   7      1          0        1    92
#>  [70,]  50   4      0          4        1   100
#>  [71,]  50   1      1          0        0   150
#>  [72,]  50   9      0        180        0   130
#>  [73,]  49   7      1          4        1    90
#>  [74,]  47   6      0        180        1   162
#>  [75,]  46   3      0        180        1   120
#>  [76,]  46   1      1          1        0   145
#>  [77,]  50   4      1          1        0   150
#>  [78,]  48   7      1          0        1   110
#>  [79,]  48  17      1         10        0   111
#>  [80,]  47   2      1          1        0   110
#>  [81,]  53   5      0        180        1   140
#>  [82,]  54  17      1         12        1   102
#>  [83,]  53   5      0         77        0   159
#>  [84,]  54   6      1          3        0   129
#>  [85,]  50   2      0          5        1   106
#>  [86,]  50  10      1          6        0   122
#>  [87,]  50  14      1         13        0   170
#>  [88,]  53   8      1          7        0   160
#>  [89,]  51  25      1          1        0   202
#>  [90,]  49   5      1          2        1   150
#>  [91,]  53   4      0          4        0   140
#>  [92,]  48   6      0        180        0   160
#>  [93,]  48  11      1         10        0   120
#>  [94,]  53   4      1          0        1   156
#>  [95,]  51  13      0         99        1   160
#>  [96,]  54   9      1          0        1   138
#>  [97,]  49  16      0         16        0   125
#>  [98,]  55   3      1          1        0   150
#>  [99,]  55   6      1          2        1   114
#> [100,]  54   9      1          1        0   130
#> [101,]  52   4      0        180        1   180
#> [102,]  51  13      1         11        0   145
#> [103,]  50   5      1          4        1   150
#> [104,]  54   4      1          0        1   121
#> [105,]  52   4      0        180        0   183
#> [106,]  50   3      0        174        1   153
#> [107,]  55  28      1         13        1   160
#> [108,]  49   6      1          0        1   130
#> [109,]  50   7      1          1        0   156
#> [110,]  53   8      1          0        1   130
#> [111,]  50   7      1          0        1   127
#> [112,]  56   4      1          1        1   130
#> [113,]  52   5      0        175        1   117
#> [114,]  55   1      0        180        0   127
#> [115,]  55   2      0          2        0   145
#> [116,]  54   1      0        180        0   162
#> [117,]  54   7      1          0        1   100
#> [118,]  56   3      0        180        1   193
#> [119,]  55   5      1          4        1   120
#> [120,]  52   8      0        180        0   119
#> [121,]  53  18      1          9        1   150
#> [122,]  55   6      0        180        0   170
#> [123,]  52  16      0         16        0   152
#> [124,]  53  10      1          9        0   172
#> [125,]  53   4      0        180        1   150
#> [126,]  55   2      0        134        1   140
#> [127,]  54   3      0        180        0   128
#> [128,]  56   3      0          8        1   139
#> [129,]  55   1      0          2        0   130
#> [130,]  57   3      0          3        0   120
#> [131,]  54   2      1          1        1   176
#> [132,]  56   4      1          0        1   140
#> [133,]  52  15      1         14        0   130
#> [134,]  56  14      1         11        0   130
#> [135,]  53   3      1          0        1   200
#> [136,]  58   8      0          8        1   130
#> [137,]  57   0      0          0        1   150
#> [138,]  53  21      1         13        1   130
#> [139,]  59   3      1          1        0   172
#> [140,]  57   4      0        180        1   119
#> [141,]  58   6      1          0        1    90
#> [142,]  54  17      1          8        1   227
#> [143,]  55  13      0        166        1   140
#> [144,]  56   5      0          5        1   150
#> [145,]  54  23      1          8        0   120
#> [146,]  57   4      1          2        1   185
#> [147,]  53   4      0        147        1   145
#> [148,]  57  11      1         10        1   129
#> [149,]  55   5      0          5        1   131
#> [150,]  54   7      1          0        1   141
#> [151,]  56   4      0          4        0   164
#> [152,]  59  15      1         10        0   140
#> [153,]  58   9      1          0        1   180
#> [154,]  58   1      1          1        1   200
#> [155,]  55   5      1          0        0   140
#> [156,]  60   5      1          1        0   138
#> [157,]  57   5      0        180        1   130
#> [158,]  58  11      1          9        1   124
#> [159,]  55   5      1          0        1   160
#> [160,]  57  10      1          9        0   103
#> [161,]  59   6      1          0        1   140
#> [162,]  59   4      1          0        1   152
#> [163,]  58  26      1          0        1   189
#> [164,]  61   9      0          9        1   160
#> [165,]  58   4      1          3        0   120
#> [166,]  60   0      1          0        1    80
#> [167,]  59   2      1          1        0   140
#> [168,]  58   8      0        161        1   140
#> [169,]  58  14      1          6        0   190
#> [170,]  61   4      1          3        0   151
#> [171,]  61   9      1          8        0   150
#> [172,]  58   1      0          1        1   100
#> [173,]  61  20      1         13        0   130
#> [174,]  57  13      1         10        0   110
#> [175,]  57   2      1          0        1   116
#> [176,]  58  10      0         10        1   150
#> [177,]  57   4      1          3        0   138
#> [178,]  57  11      0        180        1   150
#> [179,]  61   3      0         17        0   143
#> [180,]  56  18      1         11        1   165
#> [181,]  58  11      0        172        1   135
#> [182,]  55   9      1          7        1   135
#> [183,]  56   8      1          8        0   120
#> [184,]  61  13      1         12        1   130
#> [185,]  58   5      1          1        1   135
#> [186,]  61   8      0         77        0   120
#> [187,]  58   8      1          5        0   152
#> [188,]  62  10      1          0        1   153
#> [189,]  57   3      1          0        0   100
#> [190,]  61  28      1          7        0   133
#> [191,]  61   7      0          7        1   150
#> [192,]  61   6      0          6        0   134
#> [193,]  57  12      1          9        1   120
#> [194,]  62   4      1          0        0   160
#> [195,]  60  17      1          8        1   140
#> [196,]  58   3      1          0        1   146
#> [197,]  62   4      1          3        0   173
#> [198,]  58   2      0         30        0   202
#> [199,]  59   1      0        180        0   155
#> [200,]  59  16      1          9        1   133
#> [201,]  63   6      0         28        1   120
#> [202,]  61   5      0          5        1   160
#> [203,]  58  11      1          9        0   179
#> [204,]  57   2      1          1        0   159
#> [205,]  62  17      1         10        1   180
#> [206,]  62   1      1          0        1   172
#> [207,]  63   1      0        180        1   130
#> [208,]  61   7      0        180        0   135
#> [209,]  63   4      1          3        0   222
#> [210,]  62   3      0        180        1   105
#> [211,]  63   4      0        180        1   190
#> [212,]  64   4      0        180        0   130
#> [213,]  63   4      1          1        0   155
#> [214,]  60  18      1         13        0   132
#> [215,]  61   9      1          9        1   150
#> [216,]  58   9      1          9        0   110
#> [217,]  62   7      0          7        0   150
#> [218,]  59   1      0         22        1   162
#> [219,]  58   2      0        180        0   127
#> [220,]  60   7      1          5        1   141
#> [221,]  60   7      0          7        0   140
#> [222,]  59   5      1          1        0   148
#> [223,]  65  13      0        180        1   100
#> [224,]  63   1      0          1        0   130
#> [225,]  62   6      0        180        0   170
#> [226,]  61  15      1         13        0   170
#> [227,]  59   4      0          4        0   149
#> [228,]  64  10      1          9        0   160
#> [229,]  62   6      0          6        0   120
#> [230,]  63  12      1         10        0   200
#> [231,]  59  10      0        180        1   130
#> [232,]  61   6      1          1        1   117
#> [233,]  64  12      1         11        0   160
#> [234,]  66   1      1          0        1   120
#> [235,]  64   6      1          0        1   140
#> [236,]  63  10      1          0        1   148
#> [237,]  66   3      1          1        0   127
#> [238,]  64  32      1          9        1   160
#> [239,]  63  12      1          9        0   114
#> [240,]  65   8      1          0        0   168
#> [241,]  65  10      1          8        1   120
#> [242,]  64   0      0          0        1    90
#> [243,]  60   6      0        180        0   130
#> [244,]  64  21      1         10        0   190
#> [245,]  61  12      1         11        0   154
#> [246,]  61   4      0        180        1   113
#> [247,]  65   3      0        180        1   190
#> [248,]  63  16      1          7        1   110
#> [249,]  64   7      0        180        1   120
#> [250,]  66   6      1          1        1   130
#> [251,]  63  12      0         12        1   150
#> [252,]  65   6      0          9        0   112
#> [253,]  63   2      1          1        0   180
#> [254,]  62  13      1         11        0   180
#> [255,]  67  11      0         11        1   100
#> [256,]  64   2      0          2        0   201
#> [257,]  66  18      1          5        0   142
#> [258,]  62   9      0        180        0   145
#> [259,]  61  15      1         10        0   130
#> [260,]  64  19      1          8        1   160
#> [261,]  65   8      1          0        1   140
#> [262,]  67   6      0        180        1   170
#> [263,]  68   5      1          4        1   150
#> [264,]  66   7      1          0        1   115
#> [265,]  64  14      1         13        1   150
#> [266,]  65   3      0          3        0   105
#> [267,]  67   4      1          3        0   130
#> [268,]  66   3      1          0        1   135
#> [269,]  65   2      1          1        1   170
#> [270,]  68   1      0        180        1   166
#> [271,]  63   7      1          0        0   162
#> [272,]  68   5      0          5        1    90
#> [273,]  63  10      0         16        1   160
#> [274,]  66  14      0        180        0   130
#> [275,]  64   1      0          1        1   120
#> [276,]  63   8      1          1        1   162
#> [277,]  63  10      0         18        1   130
#> [278,]  68  14      0         79        0   172
#> [279,]  66  12      1         10        1   150
#> [280,]  66  11      1          0        0   100
#> [281,]  65   4      1          2        1   145
#> [282,]  69  12      0         15        1   140
#> [283,]  63   2      0        180        0   150
#> [284,]  69  21      1         10        0   180
#> [285,]  63   8      0        180        1   120
#> [286,]  68  14      1         13        1   140
#> [287,]  66   3      0          3        1   138
#> [288,]  69   1      1          0        0   170
#> [289,]  67   1      0        180        1   160
#> [290,]  67   7      1          4        1   130
#> [291,]  63   2      1          0        0    99
#> [292,]  67   2      0        180        0   184
#> [293,]  66  19      1         12        1   150
#> [294,]  67  12      1         12        0   160
#> [295,]  69   6      0         99        1   140
#> [296,]  65   4      1          1        0   130
#> [297,]  66   4      0        180        1   130
#> [298,]  70  15      1         12        1   132
#> [299,]  64  11      0         11        0   125
#> [300,]  64   4      0        180        1   140
#> [301,]  67   2      0         18        0   131
#> [302,]  66   7      1          5        1   131
#> [303,]  68   4      1          0        1   160
#> [304,]  65  13      1         12        1   130
#> [305,]  69  17      1         10        0   140
#> [306,]  69   8      0         93        0   140
#> [307,]  66   6      0        180        0   140
#> [308,]  65   1      0          1        1   120
#> [309,]  65   6      0        101        1   115
#> [310,]  68   4      0          4        1   190
#> [311,]  71   3      0          5        0   112
#> [312,]  70   7      1          0        1   190
#> [313,]  67   2      0        180        0   128
#> [314,]  66   9      1          3        1   151
#> [315,]  66   1      1          1        1   165
#> [316,]  70   4      1          0        1   180
#> [317,]  69   8      0        180        1   153
#> [318,]  70  14      0        171        0   166
#> [319,]  67  10      1          9        0   200
#> [320,]  68  18      1         14        1   170
#> [321,]  65   2      0        180        0   130
#> [322,]  69   3      1          2        0   151
#> [323,]  67  14      1         13        0   130
#> [324,]  65  14      1         13        1   150
#> [325,]  71   7      0          7        0   230
#> [326,]  66   2      0          2        1   228
#> [327,]  71   6      0         45        1   158
#> [328,]  71   3      0        103        0   133
#> [329,]  69   3      0          3        1   130
#> [330,]  70  22      1         13        0   103
#> [331,]  67   1      0         36        1   104
#> [332,]  69   6      1          4        1   174
#> [333,]  72   3      1          0        1   132
#> [334,]  72   7      0          7        1   110
#> [335,]  67   3      0        180        0   110
#> [336,]  66   2      1          1        0   123
#> [337,]  69  19      0        180        0   130
#> [338,]  67  14      0        172        1   140
#> [339,]  69  11      1          0        1   120
#> [340,]  66   2      0        180        0   130
#> [341,]  67   7      1          4        0   122
#> [342,]  69   4      1          3        0   132
#> [343,]  69   8      1          2        0   121
#> [344,]  67  13      1          9        0   130
#> [345,]  70   3      0        123        0   130
#> [346,]  70   9      0        180        1   142
#> [347,]  72   5      1          4        0   170
#> [348,]  67  22      1          1        1   140
#> [349,]  69   1      0          1        1   110
#> [350,]  67   1      0          1        1    60
#> [351,]  67   4      0         60        1   136
#> [352,]  69   5      0         76        0   120
#> [353,]  67   8      1          0        1   130
#> [354,]  72  13      1         11        1   195
#> [355,]  66  24      1         13        0   130
#> [356,]  70  35      1          0        1   105
#> [357,]  70   7      0          7        0   102
#> [358,]  68   7      1          2        0   135
#> [359,]  73  20      1          0        1   170
#> [360,]  69  10      1          6        1   120
#> [361,]  72  19      1          8        0   120
#> [362,]  72  12      1         10        0   170
#> [363,]  67   8      0        180        1   170
#> [364,]  73  13      0        152        1   130
#> [365,]  72   2      0          2        1   100
#> [366,]  67   4      1          1        0   134
#> [367,]  68  23      0        180        1   220
#> [368,]  70   3      0        180        0   121
#> [369,]  69   3      0        180        0   220
#> [370,]  71   3      1          2        0   150
#> [371,]  71   5      0        180        0   191
#> [372,]  73   6      0        180        1   117
#> [373,]  69   8      1          1        0   164
#> [374,]  68   7      0        180        1   130
#> [375,]  72  16      1          1        1   130
#> [376,]  70   4      0        180        0   180
#> [377,]  69   1      1          0        0   155
#> [378,]  73   6      1          0        1   270
#> [379,]  73   7      0          7        1   140
#> [380,]  68  15      1         13        1   130
#> [381,]  70   3      0          3        1   159
#> [382,]  70  13      1          9        0   100
#> [383,]  72   6      0        180        1   130
#> [384,]  73   0      0        180        1   161
#> [385,]  74   8      1          0        1    85
#> [386,]  69   2      1          0        1   110
#> [387,]  71   3      1          1        0   150
#> [388,]  71  20      1         10        0   140
#> [389,]  74   0      1          0        1    90
#> [390,]  73   3      1          0        1   136
#> [391,]  70   5      1          0        1   190
#> [392,]  71  17      1         11        0   160
#> [393,]  71   3      1          2        1   190
#> [394,]  70  26      1         11        1   120
#> [395,]  73   4      0         58        1   160
#> [396,]  72   5      1          3        1   160
#> [397,]  70   3      0        180        1   154
#> [398,]  73   6      0        180        0   110
#> [399,]  72  15      1          0        1   150
#> [400,]  71   7      1          2        0   143
#> [401,]  72   8      1          0        1   140
#> [402,]  74   3      0          3        1   150
#> [403,]  73  17      1         11        0   140
#> [404,]  71  13      1          8        0   121
#> [405,]  69   2      1          1        1    80
#> [406,]  70   4      1          0        1   140
#> [407,]  71  14      1         13        1   170
#> [408,]  69   7      0        180        1   144
#> [409,]  72  15      1         13        0   156
#> [410,]  70   8      0          8        0   120
#> [411,]  71  10      1          9        1   120
#> [412,]  75   1      0          1        0   133
#> [413,]  75   2      1          1        0   145
#> [414,]  73  10      1          9        1   146
#> [415,]  72  10      1          9        1   160
#> [416,]  71   2      0         10        1   112
#> [417,]  75   9      1          7        0   140
#> [418,]  71  11      1          8        0   110
#> [419,]  72  15      1         12        1   120
#> [420,]  73  10      1          8        0   120
#> [421,]  70   7      1          4        0   184
#> [422,]  72   1      1          1        0   168
#> [423,]  72   7      0         57        1   145
#> [424,]  72   2      0        180        0   120
#> [425,]  71   3      1          0        0   144
#> [426,]  73   4      0        180        0   124
#> [427,]  76   3      1          0        1   120
#> [428,]  71  32      1         12        1   107
#> [429,]  72   5      0        180        0   154
#> [430,]  72   3      0        180        0   160
#> [431,]  77  11      0         11        1   150
#> [432,]  75   3      1          1        0   180
#> [433,]  72   7      1          2        0   142
#> [434,]  73  15      0         15        1   160
#> [435,]  71  16      0        180        0   140
#> [436,]  73  10      1         10        0   124
#> [437,]  74   7      0        180        1   150
#> [438,]  74   3      0          3        1   128
#> [439,]  76   1      0        180        0   114
#> [440,]  76   8      1          0        1   141
#> [441,]  74  19      1          4        1   200
#> [442,]  75  23      1         14        1   110
#> [443,]  72   4      0         85        1   120
#> [444,]  72   4      1          3        0   160
#> [445,]  76  17      1          0        1   200
#> [446,]  76  13      1         10        0   110
#> [447,]  75   4      1          0        1   122
#> [448,]  75   0      0          0        1   130
#> [449,]  74   8      1          0        1   105
#> [450,]  76  13      1          8        1   148
#> [451,]  75   4      1          2        1   188
#> [452,]  74   6      0        180        0   160
#> [453,]  74   2      0        180        0   111
#> [454,]  72   5      0        180        0   120
#> [455,]  78  12      1         11        1   160
#> [456,]  76  44      1         10        0   105
#> [457,]  74  10      1          0        1   135
#> [458,]  76   5      1          0        1   167
#> [459,]  74   8      1          8        1   170
#> [460,]  75   9      0        180        1   140
#> [461,]  73  33      1         12        1   175
#> [462,]  73  10      1          9        0   146
#> [463,]  76  12      1         11        1   120
#> [464,]  78   5      1          0        1   170
#> [465,]  74   6      0         79        1   140
#> [466,]  74   9      1          8        0   200
#> [467,]  74   2      1          0        1   130
#> [468,]  78  18      0         18        1   144
#> [469,]  77   3      0        180        0   110
#> [470,]  73   8      1          1        1   162
#> [471,]  73  11      1          2        1   110
#> [472,]  74   2      0        180        0   100
#> [473,]  78   8      1          6        1   110
#> [474,]  74   7      0          7        0   161
#> [475,]  76  13      1          1        1   170
#> [476,]  78  32      1          9        1   198
#> [477,]  78   0      0        180        1   212
#> [478,]  78  13      1          5        0   130
#> [479,]  75  12      1          1        1   120
#> [480,]  78  15      0        180        1   270
#> [481,]  75  13      1          6        0   150
#> [482,]  74  10      1          8        0   135
#> [483,]  76   1      0          1        1    83
#> [484,]  79   4      0         80        0   145
#> [485,]  78  12      1          9        0   150
#> [486,]  77   2      1          0        1   143
#> [487,]  76  11      1          0        0   120
#> [488,]  75   3      0          3        0     0
#> [489,]  76   7      0         29        1   150
#> [490,]  80   9      0         23        1   128
#> [491,]  78   6      1          0        1   240
#> [492,]  76   3      1          0        1   140
#> [493,]  79  11      0        180        0   160
#> [494,]  79   2      1          0        1   121
#> [495,]  78  14      1          0        1   140
#> [496,]  78  11      1          8        1   118
#> [497,]  76   4      0          4        1   160
#> [498,]  76  10      1          8        0   180
#> [499,]  80   3      1          0        1   120
#> [500,]  75   2      1          1        1   204
#> [501,]  78  11      0        180        1   135
#> [502,]  79   3      0          3        0   120
#> [503,]  77   7      0        180        1   170
#> [504,]  79   4      1          0        1   120
#> [505,]  81   1      0        180        0   120
#> [506,]  80  15      1         12        1   150
#> [507,]  77   9      1          4        0   141
#> [508,]  79  10      0         10        1   120
#> [509,]  80  15      1          0        1    90
#> [510,]  81   4      1          2        1   126
#> [511,]  80   9      0        118        1   186
#> [512,]  78  32      0        180        1   130
#> [513,]  79   1      0         37        1   140
#> [514,]  81   2      0        175        0   172
#> [515,]  78   7      0          7        1   147
#> [516,]  77  13      1          0        1   190
#> [517,]  78  15      0         15        0   165
#> [518,]  80   5      1          1        1   108
#> [519,]  78   4      0        180        0   175
#> [520,]  78  26      1          5        0   194
#> [521,]  76   1      0        166        0   131
#> [522,]  81   4      1          1        1   104
#> [523,]  78  20      1          0        1   109
#> [524,]  77  10      1          8        1   130
#> [525,]  82   3      1          1        1   144
#> [526,]  77   5      0         85        0   188
#> [527,]  80   2      1          1        0   168
#> [528,]  80   6      1          0        1   119
#> [529,]  78   2      0        180        0   148
#> [530,]  80   5      0          5        1   130
#> [531,]  82   1      1          0        1    82
#> [532,]  79  10      0        180        1   150
#> [533,]  78  12      0        180        0   134
#> [534,]  79   1      0        125        0   193
#> [535,]  82  21      1          2        0   155
#> [536,]  79   4      0          4        1   121
#> [537,]  83   9      1          5        1   170
#> [538,]  82   5      0        180        0   110
#> [539,]  83   5      0        180        0   148
#> [540,]  79   7      1          6        0   130
#> [541,]  81   5      0        177        0    41
#> [542,]  80  11      1          8        0   170
#> [543,]  78  23      1         10        1   145
#> [544,]  79   4      0          4        1   183
#> [545,]  82   8      1          1        0   128
#> [546,]  81  15      0        180        1   140
#> [547,]  81  16      0         16        1   110
#> [548,]  80   6      1          0        1   150
#> [549,]  81   8      0        180        0   146
#> [550,]  80   8      1          7        0   160
#> [551,]  79   0      1          0        1    96
#> [552,]  85   4      0        180        0    90
#> [553,]  81   2      1          1        0   198
#> [554,]  84   4      0        167        0   198
#> [555,]  80   3      1          1        1   230
#> [556,]  82  23      1          0        0   110
#> [557,]  84   5      0        180        1   203
#> [558,]  84   1      0         38        1   205
#> [559,]  81   4      0         90        1   138
#> [560,]  85   3      1          2        1   160
#> [561,]  80  13      1          8        1   140
#> [562,]  84   4      0         89        1   129
#> [563,]  80   2      1          0        1   130
#> [564,]  79   4      0          4        1    60
#> [565,]  80   6      0         71        1   189
#> [566,]  83   1      0          1        1   100
#> [567,]  83   9      0        180        0   198
#> [568,]  83   3      0        114        0    98
#> [569,]  81  14      1         12        1   128
#> [570,]  83   2      0        154        0   130
#> [571,]  85   9      1          6        1   160
#> [572,]  83   1      0        180        0   160
#> [573,]  81   4      0          4        0   175
#> [574,]  84  15      1         13        1   110
#> [575,]  81   1      0          1        1   145
#> [576,]  81  12      0         12        1   163
#> [577,]  82  16      1          8        0   103
#> [578,]  82   5      1          0        1   146
#> [579,]  81   4      0          4        0   160
#> [580,]  83  12      1          2        1   170
#> [581,]  82   3      1          2        0   130
#> [582,]  82  15      1          0        0   183
#> [583,]  80   2      0         88        0   135
#> [584,]  86   8      0          8        1   132
#> [585,]  81  16      1          9        0   180
#> [586,]  84   6      0        165        0   145
#> [587,]  86   3      0          3        1   140
#> [588,]  84   3      0        180        1   120
#> [589,]  81  13      0        180        0   152
#> [590,]  81   2      1          0        1   118
#> [591,]  81   4      0        180        0   160
#> [592,]  83   9      0        180        1   149
#> [593,]  82   1      0        180        1   193
#> [594,]  83   4      0          4        0   130
#> [595,]  87   2      0          5        1   137
#> [596,]  86  12      1          0        1   132
#> [597,]  86   6      1          0        1   140
#> [598,]  84  16      0         70        1   150
#> [599,]  83  19      0         43        0   150
#> [600,]  83  10      1          0        1   190
#> [601,]  86   2      0        180        1   169
#> [602,]  88  14      1          3        1   130
#> [603,]  84   3      0          3        1   121
#> [604,]  84   7      1          2        0   148
#> [605,]  84   9      0         92        1   110
#> [606,]  86   4      0         38        1   122
#> [607,]  82   4      0          4        0   130
#> [608,]  85   3      0          3        1   113
#> [609,]  84  13      0         62        1   100
#> [610,]  86   6      1          1        0   112
#> [611,]  85  22      0         22        1   184
#> [612,]  86   9      1          7        1   142
#> [613,]  87   2      0        180        1   130
#> [614,]  86   6      0         46        0   173
#> [615,]  88   3      0        115        0   110
#> [616,]  88   2      0        180        1    68
#> [617,]  83   3      0          3        1   130
#> [618,]  86  15      1          8        1   109
#> [619,]  88   4      0          4        0    86
#> [620,]  89   4      0          4        1   153
#> [621,]  89   5      0        119        1   140
#> [622,]  87   6      0        180        1   110
#> [623,]  87   1      0          1        0   170
#> [624,]  85   8      0          8        1   136
#> [625,]  84   2      0        110        1   174
#> [626,]  87  29      0         29        1    97
#> [627,]  84   0      0        180        1   136
#> [628,]  89  10      0         46        1   170
#> [629,]  90  14      0         14        1   100
#> [630,]  88   1      0          1        0   135
#> [631,]  86   4      0        180        1   145
#> [632,]  91   8      0          8        0   100
#> [633,]  87   2      0        180        0   160
#> [634,]  87   6      1          0        0   125
#> [635,]  91  10      0        145        0   135
#> [636,]  86   3      1          0        1    80
#> [637,]  88   7      0         24        0   119
#> [638,]  88   8      0         50        1   154
#> [639,]  87   6      0        126        1   168
#> [640,]  86  10      0        180        1   137
#> [641,]  90   4      1          0        0   121
#> [642,]  91   1      0          1        1    74
#> [643,]  87  43      0        178        1   130
#> [644,]  87   5      0         36        1   150
#> [645,]  90   5      1          0        1   125
#> [646,]  89   3      1          1        1   160
#> [647,]  88   5      0        158        0   100
#> [648,]  89  12      1          0        1   130
#> [649,]  89   2      0        168        0   118
#> [650,]  91   5      0        169        1   176
#> [651,]  89  52      0         52        1   130
#> [652,]  92   7      0          7        1   110
#> [653,]  89   4      0          4        1   159
#> [654,]  89  14      0        180        1    84
#> [655,]  90  18      0        180        0   188
#> [656,]  91   4      1          0        1   120
#> [657,]  90  19      1         11        1   129
#> [658,]  90   1      0          1        1   118
#> [659,]  91   2      0          2        1   116
#> [660,]  94   8      0          8        1   142
#> [661,]  91   1      0        180        0   158
#> [662,]  90  16      0         16        1   106
#> [663,]  90   3      0         67        0   162
#> [664,]  95   8      1          5        1   150
#> [665,]  91  12      0         53        1   212
#> [666,]  91   7      0          7        0   135
#> [667,]  93   0      1          0        1   122
#> [668,]  92   5      0         69        0   139
#> [669,]  93   4      0        180        1   135
#> [670,]  96  15      1          0        1   140
#> 
#> $y
#>   [1] 180.0+   2.0+ 180.0+   5.0+ 180.0+   2.0+ 180.0+ 115.0  180.0+   5.0+
#>  [11] 180.0+ 180.0+ 180.0+ 180.0+   2.0+ 180.0+   2.0+ 180.0+ 180.0+ 180.0+
#>  [21] 180.0+ 180.0+ 180.0+ 180.0+   2.0+ 180.0+ 180.0+ 180.0+   5.0+ 180.0+
#>  [31] 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+   6.0+ 180.0+
#>  [41] 180.0+ 180.0+  73.0    5.0+ 161.0+ 180.0+ 180.0+   5.0+ 180.0+ 180.0+
#>  [51] 177.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+
#>  [61] 180.0+   2.0    1.0  179.0+ 180.0+ 179.0+ 180.0+ 180.0+ 180.0+   4.0+
#>  [71] 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+   7.0   88.0+ 180.0+
#>  [81] 180.0+ 180.0+  77.0  180.0+   5.0  180.0+ 180.0+ 180.0+ 180.0+ 180.0+
#>  [91]   4.0+ 180.0+ 180.0+ 166.0+  99.0  180.0+  16.0+ 180.0+   6.0+ 180.0+
#> [101] 180.0+  13.0+ 171.0+ 180.0+ 180.0+ 174.0+  28.0    6.0+ 180.0+ 180.0+
#> [111] 180.0+ 180.0+ 175.0+ 180.0+   2.0  180.0+   7.0+ 180.0+ 180.0+ 180.0+
#> [121] 180.0+ 180.0+  16.0+ 180.0+ 180.0+ 134.0+ 180.0+   8.0    2.0    3.0+
#> [131] 180.0+ 165.0  180.0+ 180.0+ 180.0+   8.0+   0.5  180.0+ 180.0+ 180.0+
#> [141] 180.0+ 171.0+ 166.0+   5.0+ 180.0+   4.0+ 147.0+ 180.0+   5.0+ 180.0+
#> [151]   4.0+ 180.0+   9.0+   1.0  180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+
#> [161]  64.0  180.0+ 180.0+   9.0+ 180.0+   0.5  180.0+ 161.0+ 171.0+ 180.0+
#> [171] 180.0+   1.0  180.0+ 180.0+ 180.0+  10.0+ 180.0+ 180.0+  17.0  180.0+
#> [181] 172.0+  24.0    8.0  180.0+ 180.0+  77.0    8.0+ 180.0+ 180.0+  94.0 
#> [191]   7.0    6.0  180.0+ 180.0+ 180.0+   3.0+ 180.0+  30.0  180.0+ 180.0+
#> [201]  28.0    5.0+ 180.0+ 180.0+ 180.0+   1.0  180.0+ 180.0+ 180.0+ 180.0+
#> [211] 180.0+ 180.0+   4.0+ 180.0+ 180.0+   9.0    7.0+  22.0  180.0+  84.0 
#> [221]   7.0+ 180.0+ 180.0+   1.0  180.0+ 180.0+   4.0+ 167.0    6.0+ 180.0+
#> [231] 180.0+ 180.0+  12.0  180.0+ 180.0+ 180.0+   3.0+ 180.0+  12.0  180.0+
#> [241] 180.0+   0.5  180.0+ 180.0+  12.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+
#> [251]  12.0    9.0  180.0+ 180.0+  11.0+   2.0+  18.0+ 180.0+ 180.0+ 103.0 
#> [261]  15.0  180.0+   5.0+ 179.0+  14.0+   3.0  180.0+   3.0+ 175.0+ 180.0+
#> [271]   7.0+   5.0   16.0  180.0+   1.0  180.0+  18.0   79.0   80.0  180.0+
#> [281]   4.0+  15.0  180.0+ 174.0+ 180.0+ 180.0+   3.0  175.0  180.0+ 180.0+
#> [291] 180.0+ 180.0+  19.0+  12.0   99.0  180.0+ 180.0+ 180.0+  11.0+ 180.0+
#> [301]  18.0    7.0+ 180.0+ 180.0+ 180.0+  93.0  180.0+   1.0  101.0    4.0 
#> [311]   5.0    7.0+ 180.0+ 180.0+   1.0  180.0+ 180.0+ 171.0  174.0+ 180.0+
#> [321] 180.0+ 180.0+ 180.0+  14.0+   7.0+   2.0   45.0  103.0    3.0+ 180.0+
#> [331]  36.0   97.0  180.0+   7.0  180.0+   2.0+ 180.0+ 172.0+ 180.0+ 180.0+
#> [341]   7.0  180.0+   8.0+  13.0+ 123.0  180.0+ 180.0+  51.0    1.0    1.0 
#> [351]  60.0   76.0  180.0+ 132.0  180.0+ 180.0+   7.0+   7.0+ 124.0  180.0+
#> [361] 180.0+  12.0  180.0+ 152.0    2.0   76.0  180.0+ 180.0+ 180.0+ 180.0+
#> [371] 180.0+ 180.0+ 180.0+ 180.0+  16.0+ 180.0+ 180.0+   6.0    7.0+  15.0 
#> [381]   3.0+  13.0+ 180.0+ 180.0+ 180.0+   2.0    3.0+  20.0    0.5  180.0+
#> [391] 180.0+ 180.0+   3.0  180.0+  58.0  180.0+ 180.0+ 180.0+ 180.0+ 180.0+
#> [401] 180.0+   3.0  180.0+ 175.0    2.0  180.0+  14.0+ 180.0+ 180.0+   8.0+
#> [411] 179.0+   1.0  180.0+ 180.0+ 159.0   10.0  180.0+ 180.0+ 180.0+  10.0 
#> [421] 104.0+   1.0   57.0  180.0+ 180.0+ 180.0+ 180.0+ 177.0+ 180.0+ 180.0+
#> [431]  11.0+ 180.0+   7.0   15.0+ 180.0+  10.0  180.0+   3.0  180.0+ 180.0+
#> [441] 180.0+ 180.0+  85.0  180.0+  17.0+ 174.0+   4.0    0.5  180.0+ 180.0+
#> [451]  46.0  180.0+ 180.0+ 180.0+  12.0  180.0+ 180.0+ 180.0+   8.0  180.0+
#> [461]  33.0  180.0+  12.0  180.0+  79.0  168.0+ 176.0+  18.0  180.0+ 180.0+
#> [471]  11.0  180.0+   8.0+   7.0  180.0+  32.0  180.0+ 172.0   12.0  180.0+
#> [481] 180.0+ 180.0+   1.0   80.0  180.0+   2.0   11.0    3.0   29.0   23.0 
#> [491] 180.0+   3.0+ 180.0+ 180.0+ 180.0+  11.0    4.0   10.0+   3.0+   2.0+
#> [501] 180.0+   3.0  180.0+ 138.0  180.0+ 180.0+  71.0   10.0+ 180.0+  93.0 
#> [511] 118.0  180.0+  37.0  175.0+   7.0+  22.0   15.0+   5.0+ 180.0+ 171.0+
#> [521] 166.0+  71.0   20.0+  10.0  180.0+  85.0   10.0    6.0  180.0+   5.0 
#> [531]   1.0  180.0+ 180.0+ 125.0  180.0+   4.0    9.0+ 180.0+ 180.0+ 180.0+
#> [541] 177.0+ 169.0   70.0    4.0  180.0+ 180.0+  16.0  180.0+ 180.0+ 180.0+
#> [551]   0.5  180.0+ 180.0+ 167.0    3.0+  62.0  180.0+  38.0   90.0  180.0+
#> [561] 180.0+  89.0  180.0+   4.0   71.0    1.0  180.0+ 114.0  180.0+ 154.0 
#> [571] 180.0+ 180.0+   4.0+ 180.0+   1.0   12.0   16.0+   5.0+   4.0+  77.0 
#> [581]   3.0   83.0   88.0    8.0  180.0+ 165.0    3.0  180.0+ 180.0+ 180.0+
#> [591] 180.0+ 180.0+ 180.0+   4.0+   5.0  180.0+   6.0   70.0   43.0  180.0+
#> [601] 180.0+  14.0    3.0  180.0+  92.0   38.0    4.0    3.0+  62.0    6.0+
#> [611]  22.0   11.0  180.0+  46.0  115.0  180.0+   3.0+ 180.0+   4.0    4.0 
#> [621] 119.0  180.0+   1.0+   8.0  110.0   29.0  180.0+  46.0   14.0    1.0+
#> [631] 180.0+   8.0  180.0+  25.0  145.0    3.0   24.0   50.0  126.0  180.0+
#> [641]   4.0    1.0  178.0+  36.0   89.0    3.0+ 158.0  180.0+ 168.0  169.0 
#> [651]  52.0    7.0    4.0  180.0+ 180.0+   4.0  180.0+   1.0+   2.0    8.0+
#> [661] 180.0+  16.0   67.0    8.0   53.0    7.0+   0.5   69.0  180.0+  15.0+
#> 
#> $weights
#> NULL
#> 


# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()
#> surv.cindex 
#>   0.8165295