Cross-Validated GLM with Elastic Net Regularization Survival Learner
Source:R/learner_glmnet_surv_cv_glmnet.R
mlr_learners_surv.cv_glmnet.RdGeneralized linear models with elastic net regularization.
Calls glmnet::cv.glmnet() from package glmnet.
Prediction types
This learner returns three prediction types:
lp: a vector containing the linear predictors (relative risk scores), where each score corresponds to a specific test observation. Calculated usingglmnet::predict.cv.glmnet().crank: same aslp.distr: a survival matrix in two dimensions, where observations are represented in rows and time points in columns. Calculated usingglmnet::survfit.cv.glmnet(). Parametersstypeandctyperelate to howlppredictions are transformed into survival predictions and are described insurvival::survfit.coxph(). By default the Breslow estimator is used for computing the baseline hazard.
Meta Information
Task type: “surv”
Predict Types: “crank”, “distr”, “lp”
Feature Types: “logical”, “integer”, “numeric”
Required Packages: mlr3, mlr3proba, mlr3extralearners, glmnet
Parameters
| Id | Type | Default | Levels | Range |
| alignment | character | lambda | lambda, fraction | - |
| alpha | numeric | 1 | \([0, 1]\) | |
| big | numeric | 9.9e+35 | \((-\infty, \infty)\) | |
| devmax | numeric | 0.999 | \([0, 1]\) | |
| dfmax | integer | - | \([0, \infty)\) | |
| eps | numeric | 1e-06 | \([0, 1]\) | |
| epsnr | numeric | 1e-08 | \([0, 1]\) | |
| exclude | untyped | - | - | |
| exmx | numeric | 250 | \((-\infty, \infty)\) | |
| fdev | numeric | 1e-05 | \([0, 1]\) | |
| foldid | untyped | NULL | - | |
| gamma | untyped | - | - | |
| grouped | logical | TRUE | TRUE, FALSE | - |
| intercept | logical | TRUE | TRUE, FALSE | - |
| keep | logical | FALSE | TRUE, FALSE | - |
| lambda | untyped | - | - | |
| lambda.min.ratio | numeric | - | \([0, 1]\) | |
| lower.limits | untyped | -Inf | - | |
| maxit | integer | 100000 | \([1, \infty)\) | |
| mnlam | integer | 5 | \([1, \infty)\) | |
| mxit | integer | 100 | \([1, \infty)\) | |
| mxitnr | integer | 25 | \([1, \infty)\) | |
| nfolds | integer | 10 | \([3, \infty)\) | |
| nlambda | integer | 100 | \([1, \infty)\) | |
| use_pred_offset | logical | TRUE | TRUE, FALSE | - |
| parallel | logical | FALSE | TRUE, FALSE | - |
| penalty.factor | untyped | - | - | |
| pmax | integer | - | \([0, \infty)\) | |
| pmin | numeric | 1e-09 | \([0, 1]\) | |
| prec | numeric | 1e-10 | \((-\infty, \infty)\) | |
| predict.gamma | numeric | gamma.1se | \((-\infty, \infty)\) | |
| relax | logical | FALSE | TRUE, FALSE | - |
| s | numeric | lambda.1se | \([0, \infty)\) | |
| standardize | logical | TRUE | TRUE, FALSE | - |
| standardize.response | logical | FALSE | TRUE, FALSE | - |
| thresh | numeric | 1e-07 | \([0, \infty)\) | |
| trace.it | integer | 0 | \([0, 1]\) | |
| type.gaussian | character | - | covariance, naive | - |
| type.logistic | character | Newton | Newton, modified.Newton | - |
| type.measure | character | deviance | deviance, C | - |
| type.multinomial | character | ungrouped | ungrouped, grouped | - |
| upper.limits | untyped | Inf | - | |
| stype | integer | 2 | \([1, 2]\) | |
| ctype | integer | - | \([1, 2]\) |
Offset
If a Task contains a column with the offset role, it is automatically
incorporated during training via the offset argument in glmnet::glmnet().
During prediction, the offset column from the test set is used only if
use_pred_offset = TRUE (default), passed via the newoffset argument in glmnet::predict.coxnet().
Otherwise, if the user sets use_pred_offset = FALSE, a zero offset is applied,
effectively disabling the offset adjustment during prediction.
References
Friedman J, Hastie T, Tibshirani R (2010). “Regularization Paths for Generalized Linear Models via Coordinate Descent.” Journal of Statistical Software, 33(1), 1–22. doi:10.18637/jss.v033.i01 .
See also
as.data.table(mlr_learners)for a table of available Learners in the running session (depending on the loaded packages).Chapter in the mlr3book: https://mlr3book.mlr-org.com/basics.html#learners
mlr3learners for a selection of recommended learners.
mlr3cluster for unsupervised clustering learners.
mlr3pipelines to combine learners with pre- and postprocessing steps.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
Super classes
mlr3::Learner -> mlr3proba::LearnerSurv -> LearnerSurvCVGlmnet
Methods
Method selected_features()
Returns the set of selected features as reported by glmnet::predict.glmnet()
with type set to "nonzero".
Arguments
lambda(
numeric(1))
Customlambda, defaults to the active lambda depending on parameter set.
Returns
(character()) of feature names.
Examples
# Define the Learner
learner = lrn("surv.cv_glmnet")
print(learner)
#>
#> ── <LearnerSurvCVGlmnet> (surv.cv_glmnet): Regularized Generalized Linear Model
#> • Model: -
#> • Parameters: use_pred_offset=TRUE
#> • Packages: mlr3, mlr3proba, mlr3extralearners, and glmnet
#> • Predict Types: [crank], distr, and lp
#> • Feature Types: logical, integer, and numeric
#> • Encapsulation: none (fallback: -)
#> • Properties: offset, selected_features, and weights
#> • Other settings: use_weights = 'use'
# Define a Task
task = tsk("grace")
# Create train and test set
ids = partition(task)
# Train the learner on the training ids
learner$train(task, row_ids = ids$train)
print(learner$model)
#> $model
#>
#> Call: (if (cv) glmnet::cv.glmnet else glmnet::glmnet)(x = data, y = target, family = "cox")
#>
#> Measure: Partial Likelihood Deviance
#>
#> Lambda Index Measure SE Nonzero
#> min 0.00356 44 2.926 0.1229 6
#> 1se 0.06373 13 3.033 0.1153 4
#>
#> $x
#> age los revasc revascdays stchange sysbp
#> [1,] 28 9 0 180 1 107
#> [2,] 32 5 1 0 1 121
#> [3,] 33 2 0 2 0 150
#> [4,] 35 5 1 2 0 172
#> [5,] 34 5 0 5 0 120
#> [6,] 35 2 1 1 1 112
#> [7,] 38 2 0 115 0 150
#> [8,] 35 0 0 180 1 119
#> [9,] 38 12 1 8 1 120
#> [10,] 36 5 1 0 1 115
#> [11,] 33 6 1 1 1 115
#> [12,] 38 12 1 11 1 92
#> [13,] 40 12 1 9 0 153
#> [14,] 42 3 1 1 1 130
#> [15,] 37 1 1 0 1 146
#> [16,] 38 5 1 3 0 125
#> [17,] 40 11 1 10 1 120
#> [18,] 43 3 1 0 1 100
#> [19,] 41 2 1 1 0 166
#> [20,] 40 1 1 0 1 145
#> [21,] 42 15 1 13 1 125
#> [22,] 40 3 1 1 0 170
#> [23,] 42 12 1 10 1 170
#> [24,] 43 2 1 1 1 116
#> [25,] 44 5 1 1 0 170
#> [26,] 45 3 0 180 1 154
#> [27,] 41 10 1 8 0 150
#> [28,] 44 3 0 180 0 141
#> [29,] 41 13 1 1 0 140
#> [30,] 41 5 1 4 1 141
#> [31,] 43 2 0 180 1 140
#> [32,] 45 2 0 180 1 140
#> [33,] 47 4 1 3 0 118
#> [34,] 48 15 0 180 1 160
#> [35,] 45 3 0 150 0 130
#> [36,] 44 3 1 0 1 180
#> [37,] 43 10 0 180 0 185
#> [38,] 47 6 1 0 1 116
#> [39,] 46 13 1 10 0 100
#> [40,] 44 0 1 0 1 96
#> [41,] 47 4 1 3 1 160
#> [42,] 45 8 1 0 1 117
#> [43,] 45 5 0 5 0 141
#> [44,] 46 2 1 1 1 122
#> [45,] 46 6 1 0 1 100
#> [46,] 44 4 1 0 1 114
#> [47,] 44 9 1 8 1 135
#> [48,] 45 5 0 180 1 190
#> [49,] 46 5 1 3 0 130
#> [50,] 46 4 0 180 1 121
#> [51,] 44 2 0 180 0 142
#> [52,] 46 15 0 180 1 120
#> [53,] 47 3 1 1 1 120
#> [54,] 48 3 0 180 0 154
#> [55,] 48 12 1 11 0 200
#> [56,] 47 5 1 3 1 130
#> [57,] 47 9 1 6 0 170
#> [58,] 46 3 1 0 1 119
#> [59,] 49 4 0 180 0 117
#> [60,] 47 10 0 10 1 140
#> [61,] 50 1 1 0 1 129
#> [62,] 50 4 1 1 0 125
#> [63,] 50 7 0 180 1 110
#> [64,] 49 2 0 2 0 105
#> [65,] 51 1 0 1 1 145
#> [66,] 49 15 1 11 1 160
#> [67,] 47 2 0 180 0 150
#> [68,] 52 2 0 180 1 170
#> [69,] 50 7 1 0 1 92
#> [70,] 50 4 0 4 1 100
#> [71,] 51 3 1 2 0 113
#> [72,] 50 1 1 0 0 150
#> [73,] 50 9 0 180 0 130
#> [74,] 49 7 1 4 1 90
#> [75,] 47 8 0 180 0 160
#> [76,] 47 6 0 180 1 162
#> [77,] 51 8 0 180 1 140
#> [78,] 52 2 0 180 0 155
#> [79,] 46 3 0 180 1 120
#> [80,] 46 1 1 1 0 145
#> [81,] 50 4 1 1 0 150
#> [82,] 48 7 1 0 1 110
#> [83,] 53 8 0 36 1 160
#> [84,] 52 4 1 4 0 152
#> [85,] 49 15 0 180 1 160
#> [86,] 53 5 0 180 1 140
#> [87,] 54 17 1 12 1 102
#> [88,] 53 5 0 77 0 159
#> [89,] 53 7 1 0 0 199
#> [90,] 54 6 1 3 0 129
#> [91,] 50 10 1 6 0 122
#> [92,] 50 14 1 13 0 170
#> [93,] 51 25 1 1 0 202
#> [94,] 49 5 1 2 1 150
#> [95,] 48 11 1 10 0 120
#> [96,] 54 9 1 0 1 138
#> [97,] 49 16 0 16 0 125
#> [98,] 55 3 1 1 0 150
#> [99,] 54 23 1 10 0 131
#> [100,] 52 7 1 2 0 154
#> [101,] 55 6 1 2 1 114
#> [102,] 54 9 1 1 0 130
#> [103,] 55 4 1 2 0 150
#> [104,] 52 4 0 180 1 180
#> [105,] 51 13 1 11 0 145
#> [106,] 54 4 1 0 1 121
#> [107,] 50 3 0 174 1 153
#> [108,] 55 28 1 13 1 160
#> [109,] 49 6 1 0 1 130
#> [110,] 49 1 0 1 1 110
#> [111,] 50 7 1 1 0 156
#> [112,] 53 8 1 0 1 130
#> [113,] 50 7 1 0 1 127
#> [114,] 56 4 1 1 1 130
#> [115,] 52 5 0 175 1 117
#> [116,] 55 2 0 2 0 145
#> [117,] 54 1 0 180 0 162
#> [118,] 54 7 1 0 1 100
#> [119,] 56 3 0 180 1 193
#> [120,] 55 5 1 4 1 120
#> [121,] 54 3 0 180 1 180
#> [122,] 55 6 0 180 0 170
#> [123,] 53 15 0 15 1 90
#> [124,] 53 4 0 180 1 150
#> [125,] 54 12 1 0 1 190
#> [126,] 56 3 0 8 1 139
#> [127,] 57 3 0 3 0 120
#> [128,] 54 7 1 2 0 129
#> [129,] 54 2 1 1 0 135
#> [130,] 52 9 1 3 0 170
#> [131,] 54 2 1 1 1 176
#> [132,] 57 5 1 3 1 138
#> [133,] 57 1 0 180 1 156
#> [134,] 57 1 0 1 1 100
#> [135,] 56 4 1 0 1 140
#> [136,] 52 15 1 14 0 130
#> [137,] 56 14 1 11 0 130
#> [138,] 53 3 1 0 1 200
#> [139,] 57 10 0 180 1 170
#> [140,] 58 8 0 8 1 130
#> [141,] 57 0 0 0 1 150
#> [142,] 53 21 1 13 1 130
#> [143,] 59 3 1 1 0 172
#> [144,] 57 4 0 180 1 119
#> [145,] 58 6 1 0 1 90
#> [146,] 53 15 1 10 1 130
#> [147,] 55 9 1 2 1 147
#> [148,] 55 13 0 166 1 140
#> [149,] 54 23 1 8 0 120
#> [150,] 53 4 0 147 1 145
#> [151,] 53 7 1 0 1 120
#> [152,] 57 11 1 10 1 129
#> [153,] 55 5 0 5 1 131
#> [154,] 54 7 1 0 1 141
#> [155,] 56 4 0 4 0 164
#> [156,] 58 9 1 0 1 180
#> [157,] 58 1 1 1 1 200
#> [158,] 56 7 1 5 1 120
#> [159,] 55 2 0 2 0 106
#> [160,] 57 1 0 180 0 148
#> [161,] 57 5 0 180 1 130
#> [162,] 57 10 1 9 0 103
#> [163,] 59 5 0 180 1 155
#> [164,] 59 4 1 0 1 152
#> [165,] 58 4 1 3 0 120
#> [166,] 59 2 1 1 0 140
#> [167,] 58 8 0 161 1 140
#> [168,] 61 4 1 3 0 151
#> [169,] 61 3 1 2 1 102
#> [170,] 58 1 0 1 1 100
#> [171,] 57 13 1 10 0 110
#> [172,] 57 2 1 0 1 116
#> [173,] 58 10 0 10 1 150
#> [174,] 57 4 1 3 0 138
#> [175,] 56 14 0 45 0 130
#> [176,] 57 3 1 2 0 120
#> [177,] 58 19 1 13 1 140
#> [178,] 56 13 1 6 1 158
#> [179,] 56 18 1 11 1 165
#> [180,] 58 11 0 172 1 135
#> [181,] 60 12 1 0 1 114
#> [182,] 56 8 1 8 0 120
#> [183,] 59 11 1 8 1 190
#> [184,] 57 1 0 1 0 126
#> [185,] 57 15 1 13 1 110
#> [186,] 59 5 1 2 0 182
#> [187,] 58 5 1 1 1 135
#> [188,] 59 10 0 180 0 160
#> [189,] 61 8 0 77 0 120
#> [190,] 61 13 0 13 0 210
#> [191,] 62 7 1 2 1 180
#> [192,] 57 3 1 0 0 100
#> [193,] 61 18 0 170 0 140
#> [194,] 61 28 1 7 0 133
#> [195,] 58 8 1 3 1 150
#> [196,] 61 7 0 7 1 150
#> [197,] 60 7 0 7 0 147
#> [198,] 59 13 1 2 0 198
#> [199,] 57 12 1 9 1 120
#> [200,] 62 4 1 0 0 160
#> [201,] 62 4 1 3 0 173
#> [202,] 58 2 0 30 0 202
#> [203,] 59 1 0 180 0 155
#> [204,] 59 16 1 9 1 133
#> [205,] 63 6 0 28 1 120
#> [206,] 61 13 0 13 0 120
#> [207,] 57 18 1 9 1 93
#> [208,] 58 7 0 180 1 150
#> [209,] 63 3 1 1 0 180
#> [210,] 61 7 0 180 0 135
#> [211,] 62 3 0 180 1 105
#> [212,] 63 4 0 180 1 190
#> [213,] 64 4 0 180 0 130
#> [214,] 60 18 1 13 0 132
#> [215,] 59 8 0 180 1 140
#> [216,] 61 9 1 9 1 150
#> [217,] 62 7 0 7 0 150
#> [218,] 59 1 0 22 1 162
#> [219,] 58 2 0 180 0 127
#> [220,] 60 7 1 5 1 141
#> [221,] 60 7 0 7 0 140
#> [222,] 59 5 1 1 0 148
#> [223,] 65 13 0 180 1 100
#> [224,] 63 1 0 1 0 162
#> [225,] 63 1 0 1 0 130
#> [226,] 61 15 1 13 0 170
#> [227,] 59 4 0 4 0 149
#> [228,] 64 10 1 9 0 160
#> [229,] 63 12 1 10 0 200
#> [230,] 66 1 1 0 1 120
#> [231,] 63 10 1 0 1 148
#> [232,] 65 36 1 11 0 140
#> [233,] 63 4 1 3 0 162
#> [234,] 66 3 1 1 0 127
#> [235,] 61 10 1 2 1 194
#> [236,] 63 12 1 9 0 114
#> [237,] 65 8 1 0 0 168
#> [238,] 65 10 1 8 1 120
#> [239,] 61 12 1 11 0 154
#> [240,] 64 9 0 180 0 150
#> [241,] 61 4 0 180 1 113
#> [242,] 63 16 1 7 1 110
#> [243,] 62 3 1 1 1 199
#> [244,] 65 6 0 9 0 112
#> [245,] 65 3 1 0 1 80
#> [246,] 63 2 1 1 0 180
#> [247,] 67 11 0 11 1 100
#> [248,] 66 18 1 5 0 142
#> [249,] 61 14 1 5 0 140
#> [250,] 61 15 1 10 0 130
#> [251,] 63 3 1 2 0 120
#> [252,] 63 2 1 0 0 140
#> [253,] 64 19 1 8 1 160
#> [254,] 67 6 0 180 1 170
#> [255,] 65 15 1 11 1 160
#> [256,] 68 5 1 4 1 150
#> [257,] 64 13 1 12 1 150
#> [258,] 64 6 1 0 1 125
#> [259,] 66 7 1 0 1 115
#> [260,] 66 13 1 0 0 118
#> [261,] 64 14 1 13 1 150
#> [262,] 65 3 0 3 0 105
#> [263,] 64 0 0 0 1 148
#> [264,] 67 4 1 3 0 130
#> [265,] 66 3 1 0 1 135
#> [266,] 66 6 1 0 1 140
#> [267,] 68 1 0 180 1 166
#> [268,] 68 5 0 5 1 90
#> [269,] 66 14 0 180 0 130
#> [270,] 65 17 1 14 1 100
#> [271,] 63 8 1 1 1 162
#> [272,] 65 18 1 3 0 120
#> [273,] 63 1 1 0 1 155
#> [274,] 63 10 0 18 1 130
#> [275,] 67 11 0 11 0 150
#> [276,] 68 11 0 180 0 160
#> [277,] 68 14 0 79 0 172
#> [278,] 66 12 1 10 1 150
#> [279,] 65 4 1 2 1 145
#> [280,] 65 11 1 6 0 130
#> [281,] 69 21 1 10 0 180
#> [282,] 68 14 1 13 1 140
#> [283,] 65 8 1 0 1 90
#> [284,] 69 1 1 0 0 170
#> [285,] 68 10 1 10 1 150
#> [286,] 65 1 1 0 0 133
#> [287,] 67 7 1 4 1 130
#> [288,] 65 6 0 6 0 80
#> [289,] 65 10 1 1 1 148
#> [290,] 66 19 1 12 1 150
#> [291,] 64 4 0 179 0 160
#> [292,] 70 15 1 12 1 132
#> [293,] 64 11 0 11 0 125
#> [294,] 64 4 0 180 1 140
#> [295,] 64 0 1 0 1 118
#> [296,] 66 7 1 5 1 131
#> [297,] 68 4 1 0 1 160
#> [298,] 69 4 1 3 1 150
#> [299,] 69 17 1 10 0 140
#> [300,] 64 21 0 21 1 155
#> [301,] 66 6 0 180 0 140
#> [302,] 68 18 1 0 1 160
#> [303,] 65 6 0 101 1 115
#> [304,] 68 4 0 4 1 190
#> [305,] 71 3 0 5 0 112
#> [306,] 70 7 1 0 1 190
#> [307,] 71 20 1 0 1 160
#> [308,] 66 9 1 3 1 151
#> [309,] 70 4 1 0 1 180
#> [310,] 70 14 0 171 0 166
#> [311,] 67 10 1 9 0 200
#> [312,] 69 0 0 0 1 148
#> [313,] 68 7 1 0 1 150
#> [314,] 65 14 1 13 1 150
#> [315,] 71 7 0 7 0 230
#> [316,] 66 2 0 2 1 228
#> [317,] 71 6 0 45 1 158
#> [318,] 69 5 0 5 1 142
#> [319,] 71 3 0 103 0 133
#> [320,] 69 3 0 3 1 130
#> [321,] 70 22 1 13 0 103
#> [322,] 72 7 0 7 1 110
#> [323,] 69 8 1 7 1 108
#> [324,] 67 3 0 180 0 110
#> [325,] 66 2 1 1 0 123
#> [326,] 69 19 0 180 0 130
#> [327,] 68 18 0 18 1 100
#> [328,] 66 2 0 180 0 130
#> [329,] 67 7 1 4 0 122
#> [330,] 69 4 1 3 0 132
#> [331,] 68 2 0 7 1 130
#> [332,] 69 8 1 2 0 121
#> [333,] 70 3 0 123 0 130
#> [334,] 72 5 1 4 0 170
#> [335,] 67 22 1 1 1 140
#> [336,] 68 3 0 19 0 135
#> [337,] 69 1 0 1 1 110
#> [338,] 69 5 0 76 0 120
#> [339,] 67 8 1 0 1 130
#> [340,] 72 13 1 11 1 195
#> [341,] 68 10 1 8 1 160
#> [342,] 72 30 1 0 1 145
#> [343,] 70 7 0 7 0 102
#> [344,] 71 6 0 9 0 120
#> [345,] 69 10 1 6 1 120
#> [346,] 70 11 0 180 1 210
#> [347,] 72 19 1 8 0 120
#> [348,] 72 12 1 10 0 170
#> [349,] 67 8 0 180 1 170
#> [350,] 67 5 1 0 1 147
#> [351,] 67 9 0 180 0 158
#> [352,] 73 13 0 152 1 130
#> [353,] 70 5 0 180 0 150
#> [354,] 67 4 1 1 0 134
#> [355,] 72 6 1 5 0 115
#> [356,] 71 1 0 173 1 188
#> [357,] 68 23 0 180 1 220
#> [358,] 71 3 1 2 0 150
#> [359,] 68 4 1 3 0 210
#> [360,] 72 5 0 28 0 120
#> [361,] 73 6 0 180 1 117
#> [362,] 69 8 1 1 0 164
#> [363,] 68 7 0 180 1 130
#> [364,] 72 16 1 1 1 130
#> [365,] 73 6 1 0 1 270
#> [366,] 73 7 0 7 1 140
#> [367,] 68 15 1 13 1 130
#> [368,] 70 13 1 9 0 100
#> [369,] 72 6 0 180 1 130
#> [370,] 73 0 0 180 1 161
#> [371,] 74 8 1 0 1 85
#> [372,] 73 4 0 180 1 154
#> [373,] 69 2 1 0 1 110
#> [374,] 71 15 1 11 0 165
#> [375,] 74 20 0 20 1 180
#> [376,] 68 9 0 180 1 120
#> [377,] 71 20 1 10 0 140
#> [378,] 74 0 1 0 1 90
#> [379,] 71 8 1 7 0 149
#> [380,] 73 10 1 8 0 106
#> [381,] 70 26 1 11 1 120
#> [382,] 74 4 0 4 0 120
#> [383,] 73 4 0 58 1 160
#> [384,] 70 3 0 180 1 154
#> [385,] 73 6 0 180 0 110
#> [386,] 72 15 1 0 1 150
#> [387,] 71 7 1 2 0 143
#> [388,] 72 8 1 0 1 140
#> [389,] 74 3 0 3 1 150
#> [390,] 73 17 1 11 0 140
#> [391,] 71 13 1 8 0 121
#> [392,] 69 2 1 1 1 80
#> [393,] 70 4 1 0 1 140
#> [394,] 71 14 1 13 1 170
#> [395,] 74 7 1 0 1 117
#> [396,] 72 10 1 8 1 153
#> [397,] 69 7 0 180 1 144
#> [398,] 72 15 1 13 0 156
#> [399,] 70 8 0 8 0 120
#> [400,] 71 10 1 9 1 120
#> [401,] 75 1 0 1 0 133
#> [402,] 73 10 1 9 1 146
#> [403,] 73 10 1 10 1 120
#> [404,] 73 1 0 1 1 80
#> [405,] 75 13 1 1 1 130
#> [406,] 71 4 0 4 0 134
#> [407,] 72 15 1 12 1 120
#> [408,] 73 10 1 8 0 120
#> [409,] 70 7 1 4 0 184
#> [410,] 72 1 1 1 0 168
#> [411,] 73 10 0 180 0 162
#> [412,] 72 11 0 11 1 140
#> [413,] 73 5 1 3 1 112
#> [414,] 76 25 1 12 1 170
#> [415,] 73 12 1 12 1 140
#> [416,] 72 2 0 180 0 120
#> [417,] 72 4 1 0 1 197
#> [418,] 71 3 1 0 0 144
#> [419,] 74 34 1 8 1 233
#> [420,] 71 32 1 12 1 107
#> [421,] 72 3 0 180 0 160
#> [422,] 76 5 0 5 1 130
#> [423,] 75 3 1 1 0 180
#> [424,] 72 7 1 2 0 142
#> [425,] 73 15 0 15 1 160
#> [426,] 71 16 0 180 0 140
#> [427,] 73 10 1 10 0 124
#> [428,] 74 7 0 180 1 150
#> [429,] 74 3 0 3 1 128
#> [430,] 76 1 0 180 0 114
#> [431,] 74 2 1 1 0 140
#> [432,] 74 19 1 4 1 200
#> [433,] 75 23 1 14 1 110
#> [434,] 74 2 0 180 0 190
#> [435,] 72 4 0 85 1 120
#> [436,] 73 4 1 3 1 125
#> [437,] 76 13 1 10 0 110
#> [438,] 75 7 0 7 0 190
#> [439,] 75 0 0 0 1 130
#> [440,] 75 12 0 12 1 160
#> [441,] 76 13 1 8 1 148
#> [442,] 75 4 1 2 1 188
#> [443,] 74 6 0 180 0 160
#> [444,] 76 4 0 4 1 155
#> [445,] 73 1 0 52 1 105
#> [446,] 73 0 0 180 0 156
#> [447,] 72 5 0 180 0 120
#> [448,] 78 12 1 11 1 160
#> [449,] 76 5 0 180 0 185
#> [450,] 76 5 1 0 1 167
#> [451,] 74 8 1 8 1 170
#> [452,] 75 9 0 180 1 140
#> [453,] 73 33 1 12 1 175
#> [454,] 77 5 1 0 0 123
#> [455,] 78 5 1 0 1 170
#> [456,] 73 7 1 0 0 174
#> [457,] 74 6 0 79 1 140
#> [458,] 75 3 1 1 1 171
#> [459,] 74 9 1 8 0 200
#> [460,] 79 10 1 8 0 190
#> [461,] 74 2 1 0 1 130
#> [462,] 78 18 0 18 1 144
#> [463,] 73 11 1 2 1 110
#> [464,] 74 2 0 180 0 100
#> [465,] 78 7 0 7 1 133
#> [466,] 74 15 0 180 1 172
#> [467,] 74 7 0 7 0 161
#> [468,] 78 32 1 9 1 198
#> [469,] 79 6 0 180 0 170
#> [470,] 80 10 1 6 1 147
#> [471,] 78 0 0 180 1 212
#> [472,] 78 13 1 5 0 130
#> [473,] 75 5 0 119 1 150
#> [474,] 75 12 1 1 1 120
#> [475,] 78 15 0 180 1 270
#> [476,] 80 8 0 8 1 120
#> [477,] 75 13 1 6 0 150
#> [478,] 74 10 1 8 0 135
#> [479,] 76 1 0 1 1 83
#> [480,] 79 4 0 80 0 145
#> [481,] 75 4 1 0 0 212
#> [482,] 77 2 1 0 1 143
#> [483,] 78 10 0 180 1 130
#> [484,] 76 11 1 0 0 120
#> [485,] 75 11 1 4 0 162
#> [486,] 75 3 0 3 0 0
#> [487,] 77 24 0 24 1 160
#> [488,] 79 8 0 32 1 120
#> [489,] 80 9 0 23 1 128
#> [490,] 80 6 0 6 1 150
#> [491,] 78 6 1 0 1 240
#> [492,] 78 11 1 1 1 140
#> [493,] 79 2 1 0 1 121
#> [494,] 78 11 1 8 1 118
#> [495,] 76 4 0 4 1 160
#> [496,] 79 4 0 4 1 125
#> [497,] 76 12 1 10 1 127
#> [498,] 77 6 0 6 1 107
#> [499,] 78 11 0 180 1 135
#> [500,] 77 31 1 3 1 161
#> [501,] 76 1 0 1 1 90
#> [502,] 78 7 1 0 1 110
#> [503,] 79 3 0 3 0 120
#> [504,] 77 6 0 6 1 144
#> [505,] 79 4 1 0 1 120
#> [506,] 81 1 0 180 0 120
#> [507,] 80 15 1 12 1 150
#> [508,] 77 9 1 4 0 141
#> [509,] 80 17 1 12 0 100
#> [510,] 76 7 0 161 0 151
#> [511,] 80 15 1 0 1 90
#> [512,] 81 4 1 2 1 126
#> [513,] 79 28 0 164 0 100
#> [514,] 80 9 0 118 1 186
#> [515,] 80 6 0 173 1 160
#> [516,] 78 32 0 180 1 130
#> [517,] 81 2 0 175 0 172
#> [518,] 78 7 0 7 1 147
#> [519,] 77 13 1 0 1 190
#> [520,] 80 5 1 1 1 108
#> [521,] 78 4 0 180 0 175
#> [522,] 79 3 0 3 1 101
#> [523,] 76 1 0 166 0 131
#> [524,] 78 20 1 0 1 109
#> [525,] 80 1 0 1 0 100
#> [526,] 77 10 1 8 1 130
#> [527,] 82 3 1 1 1 144
#> [528,] 77 5 0 85 0 188
#> [529,] 80 2 1 1 0 168
#> [530,] 79 6 0 6 0 152
#> [531,] 80 6 1 0 1 119
#> [532,] 78 2 0 180 0 148
#> [533,] 80 5 0 5 1 130
#> [534,] 82 1 1 0 1 82
#> [535,] 79 10 0 180 1 150
#> [536,] 77 4 0 180 1 98
#> [537,] 79 1 0 125 0 193
#> [538,] 82 21 1 2 0 155
#> [539,] 84 22 1 10 0 180
#> [540,] 79 4 0 4 1 121
#> [541,] 80 6 0 6 1 110
#> [542,] 83 9 1 5 1 170
#> [543,] 82 5 0 180 0 110
#> [544,] 83 5 0 180 0 148
#> [545,] 83 4 0 103 0 97
#> [546,] 81 11 1 8 0 160
#> [547,] 81 5 0 177 0 41
#> [548,] 80 11 1 8 0 170
#> [549,] 78 23 1 10 1 145
#> [550,] 79 4 0 4 1 183
#> [551,] 82 8 1 1 0 128
#> [552,] 79 1 0 180 1 170
#> [553,] 80 7 1 0 1 146
#> [554,] 83 8 0 8 0 115
#> [555,] 80 6 1 0 1 150
#> [556,] 80 11 1 8 0 110
#> [557,] 81 8 0 180 0 146
#> [558,] 80 8 1 7 0 160
#> [559,] 79 7 0 177 0 197
#> [560,] 79 0 1 0 1 96
#> [561,] 85 4 0 180 0 90
#> [562,] 83 2 0 2 1 155
#> [563,] 82 6 0 128 1 100
#> [564,] 84 4 0 167 0 198
#> [565,] 80 3 1 1 1 230
#> [566,] 82 23 1 0 0 110
#> [567,] 84 4 0 4 1 85
#> [568,] 81 1 0 1 1 150
#> [569,] 81 4 0 90 1 138
#> [570,] 79 9 1 8 0 150
#> [571,] 85 3 1 2 1 160
#> [572,] 80 13 1 8 1 140
#> [573,] 79 4 0 4 1 60
#> [574,] 83 1 0 1 1 100
#> [575,] 82 19 0 19 0 120
#> [576,] 83 9 0 180 0 198
#> [577,] 79 14 1 0 0 110
#> [578,] 83 3 0 114 0 98
#> [579,] 81 14 1 12 1 128
#> [580,] 82 0 0 2 1 100
#> [581,] 85 9 1 6 1 160
#> [582,] 83 1 0 180 0 160
#> [583,] 81 4 0 4 0 175
#> [584,] 82 16 1 8 0 103
#> [585,] 82 5 1 0 1 146
#> [586,] 81 4 0 4 0 160
#> [587,] 86 12 0 180 1 120
#> [588,] 83 12 1 2 1 170
#> [589,] 81 19 1 14 0 120
#> [590,] 82 3 1 2 0 130
#> [591,] 82 15 1 0 0 183
#> [592,] 80 2 0 88 0 135
#> [593,] 86 8 0 8 1 132
#> [594,] 84 6 0 165 0 145
#> [595,] 82 9 0 180 1 134
#> [596,] 85 3 0 3 1 118
#> [597,] 81 2 1 0 1 118
#> [598,] 81 4 0 180 0 160
#> [599,] 83 9 0 180 1 149
#> [600,] 82 1 0 180 1 193
#> [601,] 83 4 0 4 0 130
#> [602,] 87 2 0 5 1 137
#> [603,] 82 14 1 11 1 103
#> [604,] 83 19 0 43 0 150
#> [605,] 83 10 1 0 1 190
#> [606,] 86 2 0 180 1 169
#> [607,] 88 14 1 3 1 130
#> [608,] 84 3 0 3 1 121
#> [609,] 83 13 1 12 0 170
#> [610,] 84 7 1 2 0 148
#> [611,] 84 3 0 180 1 170
#> [612,] 82 4 0 4 0 130
#> [613,] 86 13 0 177 0 163
#> [614,] 85 3 0 3 1 113
#> [615,] 86 6 1 1 0 112
#> [616,] 83 20 1 3 1 150
#> [617,] 88 4 0 4 1 115
#> [618,] 85 22 0 22 1 184
#> [619,] 83 9 0 65 1 150
#> [620,] 87 2 0 180 1 130
#> [621,] 86 6 0 46 0 173
#> [622,] 88 3 0 115 0 110
#> [623,] 88 2 0 180 1 68
#> [624,] 83 3 0 3 1 130
#> [625,] 87 8 0 8 1 157
#> [626,] 86 15 1 8 1 109
#> [627,] 88 4 0 4 0 86
#> [628,] 89 4 0 4 1 153
#> [629,] 87 6 0 180 1 110
#> [630,] 87 1 0 1 0 170
#> [631,] 84 8 0 180 1 119
#> [632,] 87 29 0 29 1 97
#> [633,] 84 0 0 180 1 136
#> [634,] 88 1 0 1 0 135
#> [635,] 86 4 0 180 1 145
#> [636,] 91 8 0 8 0 100
#> [637,] 87 6 1 0 0 125
#> [638,] 91 10 0 145 0 135
#> [639,] 88 7 0 24 0 119
#> [640,] 88 8 0 50 1 154
#> [641,] 90 11 1 10 1 186
#> [642,] 87 6 0 126 1 168
#> [643,] 90 4 1 0 0 121
#> [644,] 91 1 0 1 1 74
#> [645,] 87 43 0 178 1 130
#> [646,] 90 5 1 0 1 125
#> [647,] 89 3 1 1 1 160
#> [648,] 91 3 0 33 1 137
#> [649,] 88 5 0 158 0 100
#> [650,] 87 7 0 74 1 105
#> [651,] 91 5 0 169 1 176
#> [652,] 89 52 0 52 1 130
#> [653,] 91 0 0 0 0 0
#> [654,] 90 18 0 180 0 188
#> [655,] 91 4 1 0 1 120
#> [656,] 90 19 1 11 1 129
#> [657,] 94 6 0 50 0 78
#> [658,] 90 1 0 1 1 118
#> [659,] 94 8 0 8 1 142
#> [660,] 92 4 0 76 1 149
#> [661,] 91 1 0 180 0 158
#> [662,] 90 16 0 16 1 106
#> [663,] 90 3 0 67 0 162
#> [664,] 95 8 1 5 1 150
#> [665,] 91 7 0 7 0 135
#> [666,] 93 0 1 0 1 122
#> [667,] 92 5 0 69 0 139
#> [668,] 92 2 0 2 0 112
#> [669,] 93 4 0 180 1 135
#> [670,] 96 15 1 0 1 140
#>
#> $y
#> [1] 180.0+ 5.0+ 2.0+ 5.0+ 5.0+ 2.0+ 115.0 180.0+ 12.0 5.0+
#> [11] 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 5.0+ 180.0+ 3.0 180.0+ 180.0+
#> [21] 180.0+ 180.0+ 180.0+ 2.0+ 155.0+ 180.0+ 180.0+ 180.0+ 180.0+ 5.0+
#> [31] 180.0+ 180.0+ 180.0+ 180.0+ 150.0 180.0+ 180.0+ 6.0+ 180.0+ 180.0+
#> [41] 180.0+ 180.0+ 5.0+ 161.0+ 180.0+ 180.0+ 180.0+ 180.0+ 5.0+ 180.0+
#> [51] 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 10.0+
#> [61] 172.0+ 180.0+ 180.0+ 2.0 1.0 179.0+ 180.0+ 180.0+ 180.0+ 4.0+
#> [71] 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+
#> [81] 180.0+ 7.0 36.0 4.0+ 180.0+ 180.0+ 180.0+ 77.0 180.0+ 180.0+
#> [91] 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 16.0+ 180.0+ 152.0+ 7.0+
#> [101] 6.0+ 180.0+ 180.0+ 180.0+ 13.0+ 180.0+ 174.0+ 28.0 6.0+ 1.0
#> [111] 180.0+ 180.0+ 180.0+ 180.0+ 175.0+ 2.0 180.0+ 7.0+ 180.0+ 180.0+
#> [121] 180.0+ 180.0+ 15.0+ 180.0+ 12.0+ 8.0 3.0+ 180.0+ 180.0+ 180.0+
#> [131] 180.0+ 140.0 180.0+ 1.0 165.0 180.0+ 180.0+ 180.0+ 180.0+ 8.0+
#> [141] 0.5 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 15.0 166.0+ 180.0+ 147.0+
#> [151] 180.0+ 180.0+ 5.0+ 180.0+ 4.0+ 9.0+ 1.0 180.0+ 2.0+ 180.0+
#> [161] 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 161.0+ 180.0+ 3.0 1.0
#> [171] 180.0+ 180.0+ 10.0+ 180.0+ 45.0 3.0+ 19.0 180.0+ 180.0+ 172.0+
#> [181] 172.0+ 8.0 180.0+ 1.0+ 15.0 180.0+ 180.0+ 180.0+ 77.0 13.0+
#> [191] 180.0+ 180.0+ 170.0 94.0 180.0+ 7.0 7.0+ 180.0+ 180.0+ 180.0+
#> [201] 180.0+ 30.0 180.0+ 180.0+ 28.0 13.0+ 18.0 180.0+ 180.0+ 180.0+
#> [211] 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 7.0+ 22.0 180.0+ 84.0
#> [221] 7.0+ 180.0+ 180.0+ 1.0 1.0 180.0+ 4.0+ 167.0 180.0+ 180.0+
#> [231] 180.0+ 36.0 180.0+ 3.0+ 88.0 12.0 180.0+ 180.0+ 12.0+ 180.0+
#> [241] 180.0+ 180.0+ 180.0+ 9.0 3.0 180.0+ 11.0+ 18.0+ 180.0+ 180.0+
#> [251] 3.0+ 2.0+ 103.0 180.0+ 180.0+ 5.0+ 13.0 180.0+ 179.0+ 166.0+
#> [261] 14.0+ 3.0 0.5+ 180.0+ 3.0+ 180.0+ 180.0+ 5.0 180.0+ 180.0+
#> [271] 180.0+ 123.0+ 1.0+ 18.0 11.0+ 180.0+ 79.0 80.0 4.0+ 180.0+
#> [281] 174.0+ 180.0+ 8.0+ 175.0 10.0 180.0+ 180.0+ 6.0 180.0+ 19.0+
#> [291] 179.0+ 180.0+ 11.0+ 180.0+ 0.5 7.0+ 180.0+ 152.0+ 180.0+ 21.0+
#> [301] 180.0+ 18.0+ 101.0 4.0 5.0 7.0+ 180.0+ 180.0+ 180.0+ 171.0
#> [311] 174.0+ 0.5 180.0+ 14.0+ 7.0+ 2.0 45.0 5.0+ 103.0 3.0+
#> [321] 180.0+ 7.0 8.0+ 180.0+ 2.0+ 180.0+ 18.0 180.0+ 7.0 180.0+
#> [331] 7.0 8.0+ 123.0 180.0+ 51.0 19.0 1.0 76.0 180.0+ 132.0
#> [341] 10.0+ 162.0 7.0+ 9.0 180.0+ 180.0+ 180.0+ 12.0 180.0+ 180.0+
#> [351] 180.0+ 152.0 180.0+ 76.0 180.0+ 173.0+ 180.0+ 180.0+ 180.0+ 28.0
#> [361] 180.0+ 180.0+ 180.0+ 16.0+ 6.0 7.0+ 15.0 13.0+ 180.0+ 180.0+
#> [371] 180.0+ 180.0+ 2.0 180.0+ 20.0 180.0+ 20.0 0.5 8.0 87.0
#> [381] 180.0+ 4.0+ 58.0 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 3.0 180.0+
#> [391] 175.0 2.0 180.0+ 14.0+ 180.0+ 10.0+ 180.0+ 180.0+ 8.0+ 179.0+
#> [401] 1.0 180.0+ 15.0 1.0 13.0 4.0+ 180.0+ 10.0 104.0+ 1.0
#> [411] 180.0+ 11.0 5.0 180.0+ 12.0 180.0+ 180.0+ 180.0+ 34.0 177.0+
#> [421] 180.0+ 5.0 180.0+ 7.0 15.0+ 180.0+ 10.0 180.0+ 3.0 180.0+
#> [431] 180.0+ 180.0+ 180.0+ 180.0+ 85.0 180.0+ 174.0+ 7.0 0.5 12.0
#> [441] 180.0+ 46.0 180.0+ 4.0 52.0 180.0+ 180.0+ 12.0 180.0+ 180.0+
#> [451] 8.0 180.0+ 33.0 5.0 180.0+ 7.0+ 79.0 3.0 168.0+ 180.0+
#> [461] 176.0+ 18.0 11.0 180.0+ 7.0 180.0+ 7.0 32.0 180.0+ 10.0
#> [471] 180.0+ 172.0 119.0 12.0 180.0+ 8.0 180.0+ 180.0+ 1.0 80.0
#> [481] 4.0+ 2.0 180.0+ 11.0 152.0+ 3.0 24.0 32.0 23.0 6.0
#> [491] 180.0+ 180.0+ 180.0+ 11.0 4.0 4.0 180.0+ 6.0 180.0+ 171.0
#> [501] 1.0 43.0 3.0 6.0 138.0 180.0+ 180.0+ 71.0 17.0 161.0
#> [511] 180.0+ 93.0 164.0 118.0 173.0 180.0+ 175.0+ 7.0+ 22.0 5.0+
#> [521] 180.0+ 3.0 166.0+ 20.0+ 1.0 10.0 180.0+ 85.0 10.0 6.0+
#> [531] 6.0 180.0+ 5.0 1.0 180.0+ 180.0+ 125.0 180.0+ 180.0+ 4.0
#> [541] 6.0 9.0+ 180.0+ 180.0+ 103.0 180.0+ 177.0+ 169.0 70.0 4.0
#> [551] 180.0+ 180.0+ 7.0+ 8.0+ 180.0+ 180.0+ 180.0+ 180.0+ 177.0+ 0.5
#> [561] 180.0+ 2.0 128.0 167.0 3.0+ 62.0 4.0 1.0 90.0 180.0+
#> [571] 180.0+ 180.0+ 4.0 1.0 19.0 180.0+ 180.0+ 114.0 180.0+ 2.0
#> [581] 180.0+ 180.0+ 4.0+ 16.0+ 5.0+ 4.0+ 180.0+ 77.0 180.0+ 3.0
#> [591] 83.0 88.0 8.0 165.0 180.0+ 3.0+ 180.0+ 180.0+ 180.0+ 180.0+
#> [601] 4.0+ 5.0 174.0 43.0 180.0+ 180.0+ 14.0 3.0 13.0 180.0+
#> [611] 180.0+ 4.0 177.0 3.0+ 6.0+ 20.0 4.0 22.0 65.0 180.0+
#> [621] 46.0 115.0 180.0+ 3.0+ 8.0+ 180.0+ 4.0 4.0 180.0+ 1.0+
#> [631] 180.0+ 29.0 180.0+ 1.0+ 180.0+ 8.0 25.0 145.0 24.0 50.0
#> [641] 11.0 126.0 4.0 1.0 178.0+ 89.0 3.0+ 33.0 158.0 74.0
#> [651] 169.0 52.0 0.5 180.0+ 4.0 180.0+ 50.0 1.0+ 8.0+ 76.0
#> [661] 180.0+ 16.0 67.0 8.0 7.0+ 0.5 69.0 2.0 180.0+ 15.0+
#>
#> $weights
#> NULL
#>
#> $offset
#> NULL
#>
# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)
# Score the predictions
predictions$score()
#> surv.cindex
#> 0.847818