Skip to contents

Gradient Boosting for Survival Analysis. Calls gbm::gbm() from gbm.

Dictionary

This Learner can be instantiated via lrn():

lrn("surv.gbm")

Meta Information

  • Task type: “surv”

  • Predict Types: “crank”, “lp”

  • Feature Types: “integer”, “numeric”, “factor”, “ordered”

  • Required Packages: mlr3, mlr3proba, mlr3extralearners, gbm

Parameters

IdTypeDefaultLevelsRange
distributioncharactercoxphcoxph-
n.treesinteger100\([1, \infty)\)
cv.foldsinteger0\([0, \infty)\)
interaction.depthinteger1\([1, \infty)\)
n.minobsinnodeinteger10\([1, \infty)\)
shrinkagenumeric0.001\([0, \infty)\)
bag.fractionnumeric0.5\([0, 1]\)
train.fractionnumeric1\([0, 1]\)
keep.datalogicalFALSETRUE, FALSE-
verboselogicalFALSETRUE, FALSE-
var.monotoneuntyped--
n.coresinteger1\((-\infty, \infty)\)
single.treelogicalFALSETRUE, FALSE-

Parameter changes

  • distribution:

  • Actual default: "bernoulli"

  • Adjusted default: "coxph"

  • Reason for change: This is the only distribution available for survival.

  • keep.data:

    • Actual default: TRUE

    • Adjusted default: FALSE

    • Reason for change: keep.data = FALSE saves memory during model fitting.

  • n.cores:

    • Actual default: NULL

    • Adjusted default: 1

    • Reason for change: Suppressing the automatic internal parallelization if cv.folds > 0.

References

Friedman, H J (2002). “Stochastic gradient boosting.” Computational statistics & data analysis, 38(4), 367–378.

See also

Author

RaphaelS1

Super classes

mlr3::Learner -> mlr3proba::LearnerSurv -> LearnerSurvGBM

Methods

Inherited methods


Method new()

Creates a new instance of this R6 class.

Usage


Method importance()

The importance scores are extracted from the model slot variable.importance.

Usage

LearnerSurvGBM$importance()

Returns

Named numeric().


Method clone()

The objects of this class are cloneable with this method.

Usage

LearnerSurvGBM$clone(deep = FALSE)

Arguments

deep

Whether to make a deep clone.

Examples

# Define the Learner
learner = mlr3::lrn("surv.gbm")
print(learner)
#> <LearnerSurvGBM:surv.gbm>: Gradient Boosting
#> * Model: -
#> * Parameters: distribution=coxph, keep.data=FALSE, n.cores=1
#> * Packages: mlr3, mlr3proba, mlr3extralearners, gbm
#> * Predict Types:  [crank], lp
#> * Feature Types: integer, numeric, factor, ordered
#> * Properties: importance, missings, weights

# Define a Task
task = mlr3::tsk("grace")

# Create train and test set
ids = mlr3::partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)
#> gbm::gbm(formula = f, distribution = "coxph", data = task$data(), 
#>     weights = NULL, keep.data = FALSE, n.cores = 1L)
#> A gradient boosted model with coxph loss function.
#> 100 iterations were performed.
#> There were 6 predictors of which 6 had non-zero influence.
print(learner$importance)
#> function () 
#> .__LearnerSurvGBM__importance(self = self, private = private, 
#>     super = super)
#> <environment: 0x557914e6d978>

# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)
#> Using 100 trees...

# Score the predictions
predictions$score()
#> surv.cindex 
#>    0.841709