Skip to contents

Model-based boosting for survival analysis. Calls mboost::mboost() from mboost.

Details

distr prediction made by mboost::survFit().

Prediction types

This learner returns two to three prediction types:

  1. lp: a vector containing the linear predictors (relative risk scores), where each score corresponds to a specific test observation. Calculated using mboost::predict.mboost(). If the family parameter is not "coxph", -lp is returned, since non-coxph families represent AFT-style distributions where lower lp values indicate higher risk.

  2. crank: same as lp.

  3. distr: a survival matrix in two dimensions, where observations are represented in rows and time points in columns. Calculated using mboost::survFit(). This prediction type is present only when the family distribution parameter is equal to "coxph" (default). By default the Breslow estimator is used for computing the baseline hazard.

Dictionary

This Learner can be instantiated via lrn():

lrn("surv.mboost")

Meta Information

  • Task type: “surv”

  • Predict Types: “crank”, “distr”, “lp”

  • Feature Types: “logical”, “integer”, “numeric”, “factor”

  • Required Packages: mlr3, mlr3proba, mlr3extralearners, mboost

Parameters

IdTypeDefaultLevelsRange
familycharactercoxphcoxph, weibull, loglog, lognormal, gehan, cindex, custom-
custom.familyuntyped--
nuirangeuntypedc(0, 100)-
offsetnumeric-\((-\infty, \infty)\)
centerlogicalTRUETRUE, FALSE-
mstopinteger100\([0, \infty)\)
nunumeric0.1\([0, 1]\)
riskcharacterinbaginbag, oobag, none-
stopinternlogicalFALSETRUE, FALSE-
tracelogicalFALSETRUE, FALSE-
oobweightsuntypedNULL-
baselearnercharacterbbsbbs, bols, btree-
sigmanumeric0.1\([0, 1]\)
ipcwuntyped1-
na.actionuntypedstats::na.omit-

References

Bühlmann, Peter, Yu, Bin (2003). “Boosting with the L 2 loss: regression and classification.” Journal of the American Statistical Association, 98(462), 324–339.

See also

Author

RaphaelS1

Super classes

mlr3::Learner -> mlr3proba::LearnerSurv -> LearnerSurvMBoost

Methods

Inherited methods


Method new()

Creates a new instance of this R6 class.

Usage


Method importance()

The importance scores are extracted with the function mboost::varimp() with the default arguments.

Usage

LearnerSurvMBoost$importance()

Returns

Named numeric().


Method selected_features()

Selected features are extracted with the function mboost::variable.names.mboost(), with used.only = TRUE.

Usage

LearnerSurvMBoost$selected_features()

Returns

character().


Method clone()

The objects of this class are cloneable with this method.

Usage

LearnerSurvMBoost$clone(deep = FALSE)

Arguments

deep

Whether to make a deep clone.

Examples

lrn("surv.mboost")
#> <LearnerSurvMBoost:surv.mboost>: Boosted Generalized Additive Model
#> * Model: -
#> * Parameters: family=coxph
#> * Packages: mlr3, mlr3proba, mlr3extralearners, mboost
#> * Predict Types:  [crank], distr, lp
#> * Feature Types: logical, integer, numeric, factor
#> * Properties: importance, selected_features, weights