Survival Oblique Random Survival Forest Learner
mlr_learners_surv.obliqueRSF.RdOblique random forest.
Calls obliqueRSF::ORSF() from obliqueRSF.
Note that obliqueRSF has been superseded by aorsf.
We highly recommend you use aorsf to fit oblique random survival forests: see https://github.com/bcjaeger/aorsf or install from CRAN with install.packages('aorsf').
Dictionary
This Learner can be instantiated via the dictionary mlr_learners or with the associated sugar function lrn():
Meta Information
Task type: “surv”
Predict Types: “crank”, “distr”
Feature Types: “integer”, “numeric”, “factor”, “ordered”
Required Packages: mlr3, mlr3proba, mlr3extralearners, obliqueRSF, pracma
Parameters
| Id | Type | Default | Levels | Range | 
| alpha | numeric | 0.5 | \((-\infty, \infty)\) | |
| ntree | integer | 100 | \([1, \infty)\) | |
| eval_times | untyped | - | - | |
| min_events_to_split_node | integer | 5 | \([1, \infty)\) | |
| min_obs_to_split_node | integer | 10 | \([1, \infty)\) | |
| min_obs_in_leaf_node | integer | 5 | \([1, \infty)\) | |
| min_events_in_leaf_node | integer | 1 | \([1, \infty)\) | |
| nsplit | integer | 25 | \([1, \infty)\) | |
| gamma | numeric | 0.5 | \([1e-16, \infty)\) | |
| max_pval_to_split_node | numeric | 0.5 | \([0, 1]\) | |
| mtry | integer | - | \([1, \infty)\) | |
| mtry_ratio | numeric | - | \([0, 1]\) | |
| dfmax | integer | - | \([1, \infty)\) | |
| use.cv | logical | FALSE | TRUE, FALSE | - | 
| verbose | logical | TRUE | TRUE, FALSE | - | 
| compute_oob_predictions | logical | FALSE | TRUE, FALSE | - | 
| random_seed | integer | - | \((-\infty, \infty)\) | 
Custom mlr3 parameters
mtry:This hyperparameter can alternatively be set via the added hyperparameter
mtry_ratioasmtry = max(ceiling(mtry_ratio * n_features), 1). Note thatmtryandmtry_ratioare mutually exclusive.
References
Jaeger BC, Long DL, Long DM, Sims M, Szychowski JM, Min Y, Mcclure LA, Howard G, Simon N (2019). “Oblique random survival forests.” The Annals of Applied Statistics, 13(3). doi:10.1214/19-aoas1261 .
See also
as.data.table(mlr_learners)for a table of available Learners in the running session (depending on the loaded packages).Chapter in the mlr3book: https://mlr3book.mlr-org.com/basics.html#learners
mlr3learners for a selection of recommended learners.
mlr3cluster for unsupervised clustering learners.
mlr3pipelines to combine learners with pre- and postprocessing steps.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
Super classes
mlr3::Learner -> mlr3proba::LearnerSurv -> LearnerSurvObliqueRSF
Methods
Method oob_error()
Integrated brier score OOB error extracted from the model slot oob_error.
Concordance is also available.
Examples
learner = mlr3::lrn("surv.obliqueRSF")
print(learner)
#> <LearnerSurvObliqueRSF:surv.obliqueRSF>: Oblique Random Forest
#> * Model: -
#> * Parameters: verbose=FALSE
#> * Packages: mlr3, mlr3proba, mlr3extralearners, obliqueRSF, pracma
#> * Predict Types:  [crank], distr
#> * Feature Types: integer, numeric, factor, ordered
#> * Properties: missings, oob_error
# available parameters:
learner$param_set$ids()
#>  [1] "alpha"                    "ntree"                   
#>  [3] "eval_times"               "min_events_to_split_node"
#>  [5] "min_obs_to_split_node"    "min_obs_in_leaf_node"    
#>  [7] "min_events_in_leaf_node"  "nsplit"                  
#>  [9] "gamma"                    "max_pval_to_split_node"  
#> [11] "mtry"                     "mtry_ratio"              
#> [13] "dfmax"                    "use.cv"                  
#> [15] "verbose"                  "compute_oob_predictions" 
#> [17] "random_seed"