Extreme Gradient Boosting Survival Learner
mlr_learners_surv.xgboost.Rd
eXtreme Gradient Boosting regression.
Calls xgboost::xgb.train()
from package xgboost.
Note
To compute on GPUs, you first need to compile xgboost yourself and link against CUDA. See https://xgboost.readthedocs.io/en/stable/build.html#building-with-gpu-support.
Custom mlr3 defaults
nrounds
:Actual default: no default.
Adjusted default: 1.
Reason for change: Without a default construction of the learner would error. Just setting a nonsense default to workaround this.
nrounds
needs to be tuned by the user.
nthread
:Actual value: Undefined, triggering auto-detection of the number of CPUs.
Adjusted value: 1.
Reason for change: Conflicting with parallelization via future.
verbose
:Actual default: 1.
Adjusted default: 0.
Reason for change: Reduce verbosity.
objective
:Actual default:
reg:squarederror
.Adjusted default:
survival:cox
.Reason for change: Changed to a survival objective.
Early stopping
Early stopping can be used to find the optimal number of boosting rounds.
The early_stopping_set
parameter controls which set is used to monitor the performance.
Set early_stopping_set = "test"
to monitor the performance of the model on the test set while training.
The test set for early stopping can be set with the "test"
row role in the mlr3::Task.
Additionally, the range must be set in which the performance must increase with early_stopping_rounds
and the maximum number of boosting rounds with nrounds
.
While resampling, the test set is automatically applied from the mlr3::Resampling.
Not that using the test set for early stopping can potentially bias the performance scores.
Dictionary
This Learner can be instantiated via the dictionary mlr_learners or with the associated sugar function lrn()
:
$get("surv.xgboost")
mlr_learnerslrn("surv.xgboost")
Meta Information
Task type: “surv”
Predict Types: “crank”, “lp”
Feature Types: “integer”, “numeric”
Required Packages: mlr3, mlr3proba, mlr3extralearners, xgboost
Parameters
Id | Type | Default | Levels | Range |
aft_loss_distribution | character | normal | normal, logistic, extreme | - |
aft_loss_distribution_scale | numeric | - | \((-\infty, \infty)\) | |
alpha | numeric | 0 | \([0, \infty)\) | |
base_score | numeric | 0.5 | \((-\infty, \infty)\) | |
booster | character | gbtree | gbtree, gblinear, dart | - |
callbacks | untyped | list | - | |
colsample_bylevel | numeric | 1 | \([0, 1]\) | |
colsample_bynode | numeric | 1 | \([0, 1]\) | |
colsample_bytree | numeric | 1 | \([0, 1]\) | |
disable_default_eval_metric | logical | FALSE | TRUE, FALSE | - |
early_stopping_rounds | integer | NULL | \([1, \infty)\) | |
early_stopping_set | character | none | none, train, test | - |
eta | numeric | 0.3 | \([0, 1]\) | |
feature_selector | character | cyclic | cyclic, shuffle, random, greedy, thrifty | - |
feval | untyped | - | ||
gamma | numeric | 0 | \([0, \infty)\) | |
grow_policy | character | depthwise | depthwise, lossguide | - |
interaction_constraints | untyped | - | - | |
iterationrange | untyped | - | - | |
lambda | numeric | 1 | \([0, \infty)\) | |
lambda_bias | numeric | 0 | \([0, \infty)\) | |
max_bin | integer | 256 | \([2, \infty)\) | |
max_delta_step | numeric | 0 | \([0, \infty)\) | |
max_depth | integer | 6 | \([0, \infty)\) | |
max_leaves | integer | 0 | \([0, \infty)\) | |
maximize | logical | NULL | TRUE, FALSE | - |
min_child_weight | numeric | 1 | \([0, \infty)\) | |
missing | numeric | NA | \((-\infty, \infty)\) | |
monotone_constraints | integer | 0 | \([-1, 1]\) | |
normalize_type | character | tree | tree, forest | - |
nrounds | integer | - | \([1, \infty)\) | |
nthread | integer | 1 | \([1, \infty)\) | |
ntreelimit | integer | - | \([1, \infty)\) | |
num_parallel_tree | integer | 1 | \([1, \infty)\) | |
objective | character | survival:cox | survival:cox, survival:aft | - |
one_drop | logical | FALSE | TRUE, FALSE | - |
predictor | character | cpu_predictor | cpu_predictor, gpu_predictor | - |
print_every_n | integer | 1 | \([1, \infty)\) | |
process_type | character | default | default, update | - |
rate_drop | numeric | 0 | \([0, 1]\) | |
refresh_leaf | logical | TRUE | TRUE, FALSE | - |
sampling_method | character | uniform | uniform, gradient_based | - |
sample_type | character | uniform | uniform, weighted | - |
save_name | untyped | - | - | |
save_period | integer | - | \([0, \infty)\) | |
scale_pos_weight | numeric | 1 | \((-\infty, \infty)\) | |
seed_per_iteration | logical | FALSE | TRUE, FALSE | - |
skip_drop | numeric | 0 | \([0, 1]\) | |
strict_shape | logical | FALSE | TRUE, FALSE | - |
subsample | numeric | 1 | \([0, 1]\) | |
top_k | integer | 0 | \([0, \infty)\) | |
tree_method | character | auto | auto, exact, approx, hist, gpu_hist | - |
tweedie_variance_power | numeric | 1.5 | \([1, 2]\) | |
updater | untyped | - | - | |
verbose | integer | 1 | \([0, 2]\) | |
watchlist | untyped | - | ||
xgb_model | untyped | - | - |
References
Chen, Tianqi, Guestrin, Carlos (2016). “Xgboost: A scalable tree boosting system.” In Proceedings of the 22nd ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 785--794. ACM. doi:10.1145/2939672.2939785 .
See also
as.data.table(mlr_learners)
for a table of available Learners in the running session (depending on the loaded packages).Chapter in the mlr3book: https://mlr3book.mlr-org.com/basics.html#learners
mlr3learners for a selection of recommended learners.
mlr3cluster for unsupervised clustering learners.
mlr3pipelines to combine learners with pre- and postprocessing steps.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
Super classes
mlr3::Learner
-> mlr3proba::LearnerSurv
-> LearnerSurvXgboost
Methods
Method importance()
The importance scores are calculated with xgboost::xgb.importance()
.
Returns
Named numeric()
.
Examples
learner = mlr3::lrn("surv.xgboost")
print(learner)
#> <LearnerSurvXgboost:surv.xgboost>: Gradient Boosting
#> * Model: -
#> * Parameters: nrounds=1, nthread=1, verbose=0, early_stopping_set=none
#> * Packages: mlr3, mlr3proba, mlr3extralearners, xgboost
#> * Predict Types: [crank], lp
#> * Feature Types: integer, numeric
#> * Properties: importance, missings, weights
# available parameters:
learner$param_set$ids()
#> [1] "aft_loss_distribution" "aft_loss_distribution_scale"
#> [3] "alpha" "base_score"
#> [5] "booster" "callbacks"
#> [7] "colsample_bylevel" "colsample_bynode"
#> [9] "colsample_bytree" "disable_default_eval_metric"
#> [11] "early_stopping_rounds" "early_stopping_set"
#> [13] "eta" "feature_selector"
#> [15] "feval" "gamma"
#> [17] "grow_policy" "interaction_constraints"
#> [19] "iterationrange" "lambda"
#> [21] "lambda_bias" "max_bin"
#> [23] "max_delta_step" "max_depth"
#> [25] "max_leaves" "maximize"
#> [27] "min_child_weight" "missing"
#> [29] "monotone_constraints" "normalize_type"
#> [31] "nrounds" "nthread"
#> [33] "ntreelimit" "num_parallel_tree"
#> [35] "objective" "one_drop"
#> [37] "predictor" "print_every_n"
#> [39] "process_type" "rate_drop"
#> [41] "refresh_leaf" "sampling_method"
#> [43] "sample_type" "save_name"
#> [45] "save_period" "scale_pos_weight"
#> [47] "seed_per_iteration" "skip_drop"
#> [49] "strict_shape" "subsample"
#> [51] "top_k" "tree_method"
#> [53] "tweedie_variance_power" "updater"
#> [55] "verbose" "watchlist"
#> [57] "xgb_model"