List Learners in mlr3verse
list_mlr3learners.Rd
Lists all learners, properties, and associated packages in a table that can be filtered and queried.
Arguments
- select
character()
Passed to data.table::subset.- filter
list()
Named list of conditions to filter on, names correspond to column names in table.
Examples
list_mlr3learners(
select = c("id", "properties", "predict_types"),
filter = list(class = "surv", predict_types = "distr"))
#> This will take a few seconds.
#> id properties predict_types
#> 1: surv.akritas crank,distr
#> 2: surv.aorsf importance,missings,oob_error crank,distr
#> 3: surv.bart importance,missings crank,distr
#> 4: surv.blackboost weights crank,distr,lp
#> 5: surv.cforest weights crank,distr
#> 6: surv.coxboost selected_features,weights crank,distr,lp
#> 7: surv.coxph weights crank,distr,lp
#> 8: surv.coxtime crank,distr
#> 9: surv.ctree weights crank,distr
#> 10: surv.cv_coxboost selected_features,weights crank,distr,lp
#> 11: surv.cv_glmnet selected_features,weights crank,distr,lp
#> 12: surv.deephit crank,distr
#> 13: surv.deepsurv crank,distr
#> 14: surv.dnnsurv crank,distr
#> 15: surv.flexible weights crank,distr,lp
#> 16: surv.gamboost importance,selected_features,weights crank,distr,lp
#> 17: surv.glmboost weights crank,distr,lp
#> 18: surv.glmnet selected_features,weights crank,distr,lp
#> 19: surv.kaplan missings crank,distr
#> 20: surv.loghaz crank,distr
#> 21: surv.mboost importance,selected_features,weights crank,distr,lp
#> 22: surv.nelson missings crank,distr
#> 23: surv.obliqueRSF missings,oob_error crank,distr
#> 24: surv.parametric weights crank,distr,lp
#> 25: surv.pchazard crank,distr
#> 26: surv.penalized crank,distr
#> 27: surv.ranger importance,oob_error,weights crank,distr
#> 28: surv.rfsrc importance,missings,oob_error,weights crank,distr
#> id properties predict_types