Survival Flexible Parametric Spline Learner
Source:R/learner_flexsurv_surv_flexible.R
      mlr_learners_surv.flexible.RdFlexible parametric spline learner.
Calls flexsurv::flexsurvspline() from flexsurv.
Meta Information
- Task type: “surv” 
- Predict Types: “crank”, “distr”, “lp” 
- Feature Types: “logical”, “integer”, “numeric”, “factor” 
- Required Packages: mlr3, mlr3proba, mlr3extralearners, flexsurv 
Parameters
| Id | Type | Default | Levels | Range | 
| bhazard | untyped | - | - | |
| k | integer | 0 | \([0, \infty)\) | |
| knots | untyped | - | - | |
| bknots | untyped | - | - | |
| scale | character | hazard | hazard, odds, normal | - | 
| timescale | character | log | log, identity | - | 
| spline | character | rp | rp, splines2ns | - | 
| inits | untyped | - | - | |
| rtrunc | untyped | - | - | |
| fixedpars | untyped | - | - | |
| cl | numeric | 0.95 | \([0, 1]\) | |
| maxiter | integer | 30 | \((-\infty, \infty)\) | |
| rel.tolerance | numeric | 1e-09 | \((-\infty, \infty)\) | |
| toler.chol | numeric | 1e-10 | \((-\infty, \infty)\) | |
| debug | integer | 0 | \([0, 1]\) | |
| outer.max | integer | 10 | \((-\infty, \infty)\) | 
Prediction types
This learner returns three prediction types:
- lp: a vector containing the linear predictors (relative risk scores), where each score corresponds to a specific test observation. Calculated using- flexsurv::flexsurvspline()and the estimated coefficients. For fitted coefficients, \(\hat{\beta} = (\hat{\beta_0},...,\hat{\beta_P})\), and the test data covariates \(X^T = (X_0,...,X_P)^T\), where \(X_0\) is a column of \(1\)s, the linear predictor vector is \(lp = \hat{\beta} X^T\).
- distr: a survival matrix in two dimensions, where observations are represented in rows and time points in columns. Calculated using- predict.flexsurvreg().
- crank: same as- lp.
Initial parameter values
- k:- Actual default: - 0
- Initial value: - 1
- Reason for change: The default value of - 0is equivalent to, and a much less efficient implementation of, LearnerSurvParametric.
 
References
Royston, Patrick, Parmar, KB M (2002). “Flexible parametric proportional-hazards and proportional-odds models for censored survival data, with application to prognostic modelling and estimation of treatment effects.” Statistics in medicine, 21(15), 2175–2197.
See also
- as.data.table(mlr_learners)for a table of available Learners in the running session (depending on the loaded packages).
- Chapter in the mlr3book: https://mlr3book.mlr-org.com/basics.html#learners 
- mlr3learners for a selection of recommended learners. 
- mlr3cluster for unsupervised clustering learners. 
- mlr3pipelines to combine learners with pre- and postprocessing steps. 
- mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces. 
Super classes
mlr3::Learner -> mlr3proba::LearnerSurv -> LearnerSurvFlexible
Examples
lrn("surv.flexible")
#> 
#> ── <LearnerSurvFlexible> (surv.flexible): Flexible Parametric Splines ──────────
#> • Model: -
#> • Parameters: k=1
#> • Packages: mlr3, mlr3proba, mlr3extralearners, and flexsurv
#> • Predict Types: [crank], distr, and lp
#> • Feature Types: logical, integer, numeric, and factor
#> • Encapsulation: none (fallback: -)
#> • Properties: weights
#> • Other settings: use_weights = 'use'