Skip to contents

Generalized linear models with elastic net regularization. Calls glmnet::glmnet() from package glmnet.

Initial parameter values

  • family is set to "cox" and cannot be changed.

Prediction types

This learner returns three prediction types:

  1. lp: a vector containing the linear predictors (relative risk scores), where each score corresponds to a specific test observation. Calculated using glmnet::predict.coxnet().

  2. crank: same as lp.

  3. distr: a survival matrix in two dimensions, where observations are represented in rows and time points in columns. Calculated using glmnet::survfit.coxnet(). Parameters stype and ctype relate to how lp predictions are transformed into survival predictions and are described in survival::survfit.coxph(). By default the Breslow estimator is used for computing the baseline hazard.

Caution: This learner is different to learners calling glmnet::cv.glmnet() in that it does not use the internal optimization of parameter lambda. Instead, lambda needs to be tuned by the user (e.g., via mlr3tuning). When lambda is tuned, the glmnet will be trained for each tuning iteration. While fitting the whole path of lambdas would be more efficient, as is done by default in glmnet::glmnet(), tuning/selecting the parameter at prediction time (using parameter s) is currently not supported in mlr3 (at least not in efficient manner). Tuning the s parameter is, therefore, currently discouraged.

When the data are i.i.d. and efficiency is key, we recommend using the respective auto-tuning counterpart in mlr_learners_surv.cv_glmnet(). However, in some situations this is not applicable, usually when data are imbalanced or not i.i.d. (longitudinal, time-series) and tuning requires custom resampling strategies (blocked design, stratification).

Offset

If a Task contains a column with the offset role, it is automatically incorporated during training via the offset argument in glmnet::glmnet(). During prediction, the offset column from the test set is used only if use_pred_offset = TRUE (default), passed via the newoffset argument in glmnet::predict.coxnet(). Otherwise, if the user sets use_pred_offset = FALSE, a zero offset is applied, effectively disabling the offset adjustment during prediction.

Dictionary

This Learner can be instantiated via lrn():

lrn("surv.glmnet")

Meta Information

  • Task type: “surv”

  • Predict Types: “crank”, “distr”, “lp”

  • Feature Types: “logical”, “integer”, “numeric”

  • Required Packages: mlr3, mlr3proba, mlr3extralearners, glmnet

Parameters

IdTypeDefaultLevelsRange
alignmentcharacterlambdalambda, fraction-
alphanumeric1\([0, 1]\)
bignumeric9.9e+35\((-\infty, \infty)\)
devmaxnumeric0.999\([0, 1]\)
dfmaxinteger-\([0, \infty)\)
epsnumeric1e-06\([0, 1]\)
epsnrnumeric1e-08\([0, 1]\)
exactlogicalFALSETRUE, FALSE-
excludeuntyped--
exmxnumeric250\((-\infty, \infty)\)
fdevnumeric1e-05\([0, 1]\)
gammauntyped--
groupedlogicalTRUETRUE, FALSE-
interceptlogicalTRUETRUE, FALSE-
keeplogicalFALSETRUE, FALSE-
lambdauntyped--
lambda.min.rationumeric-\([0, 1]\)
lower.limitsuntyped-Inf-
maxitinteger100000\([1, \infty)\)
mnlaminteger5\([1, \infty)\)
mxitinteger100\([1, \infty)\)
mxitnrinteger25\([1, \infty)\)
nlambdainteger100\([1, \infty)\)
use_pred_offsetlogicalTRUETRUE, FALSE-
parallellogicalFALSETRUE, FALSE-
penalty.factoruntyped--
pmaxinteger-\([0, \infty)\)
pminnumeric1e-09\([0, 1]\)
precnumeric1e-10\((-\infty, \infty)\)
predict.gammanumericgamma.1se\((-\infty, \infty)\)
relaxlogicalFALSETRUE, FALSE-
snumeric0.01\([0, \infty)\)
standardizelogicalTRUETRUE, FALSE-
threshnumeric1e-07\([0, \infty)\)
trace.itinteger0\([0, 1]\)
type.logisticcharacterNewtonNewton, modified.Newton-
type.multinomialcharacterungroupedungrouped, grouped-
upper.limitsuntypedInf-
stypeinteger2\([1, 2]\)
ctypeinteger-\([1, 2]\)

References

Friedman J, Hastie T, Tibshirani R (2010). “Regularization Paths for Generalized Linear Models via Coordinate Descent.” Journal of Statistical Software, 33(1), 1–22. doi:10.18637/jss.v033.i01 .

See also

Author

be-marc

Super classes

mlr3::Learner -> mlr3proba::LearnerSurv -> LearnerSurvGlmnet

Methods

Inherited methods


Method new()

Creates a new instance of this R6 class.

Usage


Method selected_features()

Returns the set of selected features as reported by glmnet::predict.glmnet() with type set to "nonzero".

Usage

LearnerSurvGlmnet$selected_features(lambda = NULL)

Arguments

lambda

(numeric(1))
Custom lambda, defaults to the active lambda depending on parameter set.

Returns

(character()) of feature names.


Method clone()

The objects of this class are cloneable with this method.

Usage

LearnerSurvGlmnet$clone(deep = FALSE)

Arguments

deep

Whether to make a deep clone.

Examples

# Define the Learner
learner = lrn("surv.glmnet")
print(learner)
#> 
#> ── <LearnerSurvGlmnet> (surv.glmnet): Regularized Generalized Linear Model ─────
#> • Model: -
#> • Parameters: use_pred_offset=TRUE
#> • Packages: mlr3, mlr3proba, mlr3extralearners, and glmnet
#> • Predict Types: [crank], distr, and lp
#> • Feature Types: logical, integer, and numeric
#> • Encapsulation: none (fallback: -)
#> • Properties: offset, selected_features, and weights
#> • Other settings: use_weights = 'use'

# Define a Task
task = tsk("grace")

# Create train and test set
ids = partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)
#> $model
#> 
#> Call:  (if (cv) glmnet::cv.glmnet else glmnet::glmnet)(x = data, y = target,      family = "cox") 
#> 
#>    Df  %Dev   Lambda
#> 1   0  0.00 0.195000
#> 2   1  0.65 0.177700
#> 3   2  1.49 0.161900
#> 4   2  2.41 0.147500
#> 5   2  3.19 0.134400
#> 6   3  4.16 0.122500
#> 7   3  6.79 0.111600
#> 8   3  8.72 0.101700
#> 9   3 10.20 0.092650
#> 10  3 11.37 0.084420
#> 11  3 12.32 0.076920
#> 12  3 13.10 0.070080
#> 13  3 13.74 0.063860
#> 14  3 14.28 0.058190
#> 15  3 14.72 0.053020
#> 16  4 15.11 0.048310
#> 17  4 15.45 0.044020
#> 18  5 15.73 0.040110
#> 19  5 15.97 0.036540
#> 20  6 16.20 0.033300
#> 21  6 16.39 0.030340
#> 22  6 16.55 0.027640
#> 23  6 16.69 0.025190
#> 24  6 16.81 0.022950
#> 25  6 16.91 0.020910
#> 26  6 16.99 0.019050
#> 27  6 17.06 0.017360
#> 28  6 17.11 0.015820
#> 29  6 17.16 0.014410
#> 30  6 17.20 0.013130
#> 31  6 17.24 0.011970
#> 32  6 17.27 0.010900
#> 33  6 17.29 0.009934
#> 34  6 17.31 0.009052
#> 35  6 17.33 0.008248
#> 36  6 17.34 0.007515
#> 37  6 17.35 0.006847
#> 38  6 17.36 0.006239
#> 39  6 17.37 0.005685
#> 40  6 17.38 0.005180
#> 41  6 17.39 0.004720
#> 42  6 17.39 0.004300
#> 43  6 17.39 0.003918
#> 44  6 17.40 0.003570
#> 45  6 17.40 0.003253
#> 
#> $x
#>        age los revasc revascdays stchange sysbp
#>   [1,]  32   5      1          0        1   121
#>   [2,]  33   2      0          2        0   150
#>   [3,]  35   5      1          2        0   172
#>   [4,]  35  10      1          9        0   106
#>   [5,]  34   5      0          5        0   120
#>   [6,]  35   2      0        180        0   121
#>   [7,]  35   2      1          1        1   112
#>   [8,]  38   2      0        115        0   150
#>   [9,]  36   1      0        180        1   155
#>  [10,]  35   0      0        180        1   119
#>  [11,]  38  12      1          8        1   120
#>  [12,]  36   5      1          0        1   115
#>  [13,]  33   6      1          1        1   115
#>  [14,]  38  16      1         10        0   160
#>  [15,]  38  12      1         11        1    92
#>  [16,]  40  12      1          9        0   153
#>  [17,]  42   3      1          1        1   130
#>  [18,]  37   1      1          0        1   146
#>  [19,]  38   5      1          3        0   125
#>  [20,]  42   2      0          2        0   140
#>  [21,]  40  11      1         10        1   120
#>  [22,]  42   2      0        180        0   100
#>  [23,]  41   2      1          1        0   166
#>  [24,]  40   1      1          0        1   145
#>  [25,]  42  15      1         13        1   125
#>  [26,]  43   2      1          1        1   116
#>  [27,]  42   2      0        180        1   124
#>  [28,]  41  10      1          8        0   150
#>  [29,]  44   3      0        180        0   141
#>  [30,]  45   9      1          7        0   110
#>  [31,]  45   6      0        180        1   170
#>  [32,]  41   5      1          4        1   141
#>  [33,]  43   2      0        180        1   140
#>  [34,]  45   2      0        180        1   140
#>  [35,]  46  15      0        180        0   120
#>  [36,]  46   2      1          1        0   126
#>  [37,]  47   4      1          3        0   118
#>  [38,]  48  15      0        180        1   160
#>  [39,]  45   3      0        150        0   130
#>  [40,]  46   7      1          2        0   166
#>  [41,]  43  29      0        180        1   180
#>  [42,]  45   4      1          0        0   124
#>  [43,]  43  10      0        180        0   185
#>  [44,]  47   6      1          0        1   116
#>  [45,]  44   0      1          0        1    96
#>  [46,]  43   3      1          0        1   124
#>  [47,]  45   8      1          0        1   117
#>  [48,]  49   5      0         73        1   136
#>  [49,]  45   5      0          5        0   141
#>  [50,]  46   2      1          1        1   122
#>  [51,]  46   6      1          0        1   100
#>  [52,]  47   2      0        180        0   108
#>  [53,]  46   5      1          3        0   130
#>  [54,]  46   4      0        180        1   121
#>  [55,]  44   2      0        180        0   142
#>  [56,]  48   3      0        180        0   154
#>  [57,]  48  12      1         11        0   200
#>  [58,]  47   5      1          3        1   130
#>  [59,]  47   9      1          6        0   170
#>  [60,]  46   3      1          0        1   119
#>  [61,]  49   4      0        180        0   117
#>  [62,]  47  10      0         10        1   140
#>  [63,]  50   1      1          0        1   129
#>  [64,]  48   2      1          0        0   184
#>  [65,]  50   4      1          1        0   125
#>  [66,]  46   9      1          9        1   122
#>  [67,]  50   7      0        180        1   110
#>  [68,]  49  15      1         11        1   160
#>  [69,]  46   6      1          0        1   156
#>  [70,]  52   2      0        180        1   170
#>  [71,]  50   7      1          0        1    92
#>  [72,]  50   4      0          4        1   100
#>  [73,]  50   1      1          0        0   150
#>  [74,]  50   9      0        180        0   130
#>  [75,]  49   7      1          4        1    90
#>  [76,]  47   8      0        180        0   160
#>  [77,]  47   6      0        180        1   162
#>  [78,]  51   8      0        180        1   140
#>  [79,]  52   2      0        180        0   155
#>  [80,]  48   7      1          0        1   110
#>  [81,]  53   8      0         36        1   160
#>  [82,]  48  17      1         10        0   111
#>  [83,]  54  17      1         12        1   102
#>  [84,]  53   5      0         77        0   159
#>  [85,]  53   7      1          0        0   199
#>  [86,]  51   3      1          1        0   140
#>  [87,]  50   2      0          5        1   106
#>  [88,]  50  10      1          6        0   122
#>  [89,]  48   3      1          2        0   150
#>  [90,]  51  25      1          1        0   202
#>  [91,]  49   5      1          2        1   150
#>  [92,]  53   4      0          4        0   140
#>  [93,]  52  14      1          7        1   200
#>  [94,]  48   6      0        180        0   160
#>  [95,]  51  13      0         99        1   160
#>  [96,]  54   9      1          0        1   138
#>  [97,]  49  16      0         16        0   125
#>  [98,]  54  23      1         10        0   131
#>  [99,]  52   7      1          2        0   154
#> [100,]  54   9      1          1        0   130
#> [101,]  52   4      0        180        1   180
#> [102,]  51  13      1         11        0   145
#> [103,]  50   5      1          4        1   150
#> [104,]  54   4      1          0        1   121
#> [105,]  52   4      0        180        0   183
#> [106,]  50   3      0        174        1   153
#> [107,]  55  28      1         13        1   160
#> [108,]  50   7      1          1        0   156
#> [109,]  53   9      0          9        1    95
#> [110,]  53   8      1          0        1   130
#> [111,]  50   7      1          0        1   127
#> [112,]  56   4      1          1        1   130
#> [113,]  55   2      0          2        0   145
#> [114,]  54   1      0        180        0   162
#> [115,]  54   7      1          0        1   100
#> [116,]  56   2      0        180        0   132
#> [117,]  55   5      1          4        1   120
#> [118,]  54   3      0        180        1   180
#> [119,]  55   6      0        180        0   170
#> [120,]  52  16      0         16        0   152
#> [121,]  52  16      1         14        0   170
#> [122,]  53  15      0         15        1    90
#> [123,]  53   4      0        180        1   150
#> [124,]  54  12      1          0        1   190
#> [125,]  55   2      0        134        1   140
#> [126,]  54   3      0        180        0   128
#> [127,]  56   3      0          8        1   139
#> [128,]  55   1      0          2        0   130
#> [129,]  57   3      0          3        0   120
#> [130,]  54   7      1          2        0   129
#> [131,]  52   9      1          3        0   170
#> [132,]  54   2      1          1        1   176
#> [133,]  57   5      1          3        1   138
#> [134,]  57   1      0        180        1   156
#> [135,]  57   1      0          1        1   100
#> [136,]  56   4      1          0        1   140
#> [137,]  52   2      0        180        0   140
#> [138,]  55  11      1          7        0   104
#> [139,]  53   3      1          0        1   200
#> [140,]  57  10      0        180        1   170
#> [141,]  58   8      0          8        1   130
#> [142,]  54   5      0        180        1   108
#> [143,]  53  21      1         13        1   130
#> [144,]  59   3      1          1        0   172
#> [145,]  57   4      0        180        1   119
#> [146,]  53  15      1         10        1   130
#> [147,]  54  17      1          8        1   227
#> [148,]  55   9      1          2        1   147
#> [149,]  56   5      0          5        1   150
#> [150,]  54  23      1          8        0   120
#> [151,]  57   4      1          2        1   185
#> [152,]  53   4      0        147        1   145
#> [153,]  53   7      1          0        1   120
#> [154,]  55   5      0          5        1   131
#> [155,]  56   4      0          4        0   164
#> [156,]  59  15      1         10        0   140
#> [157,]  58   9      1          0        1   180
#> [158,]  58   1      1          1        1   200
#> [159,]  55   5      1          0        0   140
#> [160,]  56   7      1          5        1   120
#> [161,]  55   2      0          2        0   106
#> [162,]  59   9      1          1        1   125
#> [163,]  57   1      0        180        0   148
#> [164,]  59   3      0        180        0   120
#> [165,]  58   4      1          0        1   160
#> [166,]  60   5      1          1        0   138
#> [167,]  57   5      0        180        1   130
#> [168,]  58  11      1          9        1   124
#> [169,]  59   6      1          0        1   140
#> [170,]  59   5      0        180        1   155
#> [171,]  59   4      1          0        1   152
#> [172,]  58  26      1          0        1   189
#> [173,]  61   9      0          9        1   160
#> [174,]  60   0      1          0        1    80
#> [175,]  59   2      1          1        0   140
#> [176,]  58  14      1          6        0   190
#> [177,]  61   3      1          2        1   102
#> [178,]  58   1      0          1        1   100
#> [179,]  61  20      1         13        0   130
#> [180,]  57  13      1         10        0   110
#> [181,]  57   2      1          0        1   116
#> [182,]  58  10      0         10        1   150
#> [183,]  57   4      1          3        0   138
#> [184,]  57  11      0        180        1   150
#> [185,]  61   3      0         17        0   143
#> [186,]  56  14      0         45        0   130
#> [187,]  58  19      1         13        1   140
#> [188,]  56  13      1          6        1   158
#> [189,]  56  18      1         11        1   165
#> [190,]  59   9      1          0        1    80
#> [191,]  55   4      1          3        1   160
#> [192,]  61   4      1          0        1   115
#> [193,]  56   8      1          8        0   120
#> [194,]  59  11      1          8        1   190
#> [195,]  57   1      0          1        0   126
#> [196,]  57  15      1         13        1   110
#> [197,]  58   5      1          1        1   135
#> [198,]  59  10      0        180        0   160
#> [199,]  61   8      0         77        0   120
#> [200,]  58   8      1          5        0   152
#> [201,]  62  10      1          0        1   153
#> [202,]  57   3      1          0        0   100
#> [203,]  61  18      0        170        0   140
#> [204,]  61  28      1          7        0   133
#> [205,]  58   8      1          3        1   150
#> [206,]  57   7      0        169        0   180
#> [207,]  60   7      0          7        0   147
#> [208,]  61   6      0          6        0   134
#> [209,]  59  13      1          2        0   198
#> [210,]  57  12      1          9        1   120
#> [211,]  62   4      1          0        0   160
#> [212,]  60  17      1          8        1   140
#> [213,]  58   3      1          0        1   146
#> [214,]  62   4      1          3        0   173
#> [215,]  59   1      0        180        0   155
#> [216,]  59  16      1          9        1   133
#> [217,]  63   6      0         28        1   120
#> [218,]  61  13      0         13        0   120
#> [219,]  58  11      1          9        0   179
#> [220,]  57   2      1          1        0   159
#> [221,]  62  17      1         10        1   180
#> [222,]  62   1      1          0        1   172
#> [223,]  63   3      1          1        0   180
#> [224,]  63   1      0        180        1   130
#> [225,]  63   4      1          3        0   222
#> [226,]  62   3      0        180        1   105
#> [227,]  63   4      0        180        1   190
#> [228,]  63  15      1         10        1   126
#> [229,]  60  18      1         13        0   132
#> [230,]  62   7      0          7        0   150
#> [231,]  59   1      0         22        1   162
#> [232,]  58   2      0        180        0   127
#> [233,]  60   7      1          5        1   141
#> [234,]  59   5      1          1        0   148
#> [235,]  60   7      1          1        1    90
#> [236,]  65  13      0        180        1   100
#> [237,]  62   6      0        180        0   170
#> [238,]  61  15      1         13        0   170
#> [239,]  60   3      0          3        0   168
#> [240,]  64  10      1          9        0   160
#> [241,]  59  10      0        180        1   130
#> [242,]  60   8      0         17        1   130
#> [243,]  61   6      1          1        1   117
#> [244,]  64  12      1         11        0   160
#> [245,]  66   1      1          0        1   120
#> [246,]  64   6      1          0        1   140
#> [247,]  63  14      1          9        0   123
#> [248,]  65  36      1         11        0   140
#> [249,]  66   3      1          1        0   127
#> [250,]  64  32      1          9        1   160
#> [251,]  63   7      0        180        0   120
#> [252,]  66   5      1          0        1   110
#> [253,]  65   8      1          0        0   168
#> [254,]  64   0      0          0        1    90
#> [255,]  60   6      0        180        0   130
#> [256,]  64  21      1         10        0   190
#> [257,]  61  12      1         11        0   154
#> [258,]  64   9      0        180        0   150
#> [259,]  61   4      0        180        1   113
#> [260,]  65   3      0        180        1   190
#> [261,]  64   7      0        180        1   120
#> [262,]  63  12      0         12        1   150
#> [263,]  65   6      0          9        0   112
#> [264,]  65   3      1          0        1    80
#> [265,]  63   5      1          4        0   170
#> [266,]  62  13      1         11        0   180
#> [267,]  67  11      0         11        1   100
#> [268,]  66  16      1         11        1   169
#> [269,]  62   9      0        180        0   145
#> [270,]  61  15      1         10        0   130
#> [271,]  63   3      1          2        0   120
#> [272,]  64  19      1          8        1   160
#> [273,]  65   8      1          0        1   140
#> [274,]  68   5      1          4        1   150
#> [275,]  64  13      1         12        1   150
#> [276,]  66  13      1          0        0   118
#> [277,]  64  14      1         13        1   150
#> [278,]  65   3      0          3        0   105
#> [279,]  67   4      1          3        0   130
#> [280,]  66   3      1          0        1   135
#> [281,]  65   2      1          1        1   170
#> [282,]  68   1      0        180        1   166
#> [283,]  64  10      1          9        1   110
#> [284,]  67   8      1          1        1   130
#> [285,]  63  10      0         16        1   160
#> [286,]  66  14      0        180        0   130
#> [287,]  64   1      0          1        1   120
#> [288,]  68  18      0        180        1   260
#> [289,]  63   8      1          1        1   162
#> [290,]  65  18      1          3        0   120
#> [291,]  63  10      0         18        1   130
#> [292,]  68  11      0        180        0   160
#> [293,]  68  14      0         79        0   172
#> [294,]  66  11      1          0        0   100
#> [295,]  65   4      1          2        1   145
#> [296,]  69  12      0         15        1   140
#> [297,]  66  15      1         13        1   160
#> [298,]  65  11      1          6        0   130
#> [299,]  69  21      1         10        0   180
#> [300,]  69   6      0        180        1   100
#> [301,]  66   9      1          8        0   130
#> [302,]  68  14      1         13        1   140
#> [303,]  69   1      1          0        0   170
#> [304,]  67   1      0        180        1   160
#> [305,]  68  10      1         10        1   150
#> [306,]  65   1      1          0        0   133
#> [307,]  67   7      1          4        1   130
#> [308,]  63   2      1          0        0    99
#> [309,]  66  19      1         12        1   150
#> [310,]  64   4      0        179        0   160
#> [311,]  64  11      0         11        0   125
#> [312,]  64   4      0        180        1   140
#> [313,]  64   0      1          0        1   118
#> [314,]  66   7      1          5        1   131
#> [315,]  69   4      1          3        1   150
#> [316,]  69  17      1         10        0   140
#> [317,]  64  21      0         21        1   155
#> [318,]  66   6      0        180        0   140
#> [319,]  68  18      1          0        1   160
#> [320,]  65   6      0        101        1   115
#> [321,]  68   4      0          4        1   190
#> [322,]  71   3      0          5        0   112
#> [323,]  70   7      1          0        1   190
#> [324,]  71  20      1          0        1   160
#> [325,]  66   9      1          3        1   151
#> [326,]  70   4      1          0        1   180
#> [327,]  69   8      0        180        1   153
#> [328,]  66   4      0        180        0   130
#> [329,]  67  10      1          9        0   200
#> [330,]  68  18      1         14        1   170
#> [331,]  65   2      0        180        0   130
#> [332,]  68   7      1          0        1   150
#> [333,]  69   3      1          2        0   151
#> [334,]  67  14      1         13        0   130
#> [335,]  65  14      1         13        1   150
#> [336,]  69   8      0        180        1   180
#> [337,]  71   6      0         45        1   158
#> [338,]  69   3      0          3        1   130
#> [339,]  70  22      1         13        0   103
#> [340,]  67   1      0         36        1   104
#> [341,]  67   5      0          5        0   130
#> [342,]  68   6      0        180        0   145
#> [343,]  69   8      1          5        1   195
#> [344,]  69   6      1          4        1   174
#> [345,]  69   8      1          7        1   108
#> [346,]  66   2      1          1        0   123
#> [347,]  69  19      0        180        0   130
#> [348,]  68  18      0         18        1   100
#> [349,]  69  11      1          0        1   120
#> [350,]  66   2      0        180        0   130
#> [351,]  67   7      1          4        0   122
#> [352,]  69   4      1          3        0   132
#> [353,]  68   2      0          7        1   130
#> [354,]  67  13      1          9        0   130
#> [355,]  70   3      0        123        0   130
#> [356,]  70   9      0        180        1   142
#> [357,]  72   5      1          4        0   170
#> [358,]  67  22      1          1        1   140
#> [359,]  68   3      0         19        0   135
#> [360,]  67  12      1          8        0   120
#> [361,]  67   4      0         60        1   136
#> [362,]  69   5      0         76        0   120
#> [363,]  67   8      1          0        1   130
#> [364,]  72  13      1         11        1   195
#> [365,]  66  24      1         13        0   130
#> [366,]  70  35      1          0        1   105
#> [367,]  70   7      0          7        0   102
#> [368,]  73  20      1          0        1   170
#> [369,]  71   6      0          9        0   120
#> [370,]  69  10      1          6        1   120
#> [371,]  70  11      0        180        1   210
#> [372,]  72  19      1          8        0   120
#> [373,]  72  12      1         10        0   170
#> [374,]  67   9      0        180        0   158
#> [375,]  70   5      0        180        0   150
#> [376,]  72   2      0          2        1   100
#> [377,]  67   4      1          1        0   134
#> [378,]  71   1      0        173        1   188
#> [379,]  68  23      0        180        1   220
#> [380,]  69   3      0        180        0   220
#> [381,]  72   5      0         28        0   120
#> [382,]  71   5      0        180        0   191
#> [383,]  73   6      0        180        1   117
#> [384,]  69  16      1         10        1   140
#> [385,]  69   8      1          1        0   164
#> [386,]  69   1      1          0        0   155
#> [387,]  73   6      1          0        1   270
#> [388,]  71   2      1          0        1   180
#> [389,]  73   7      0          7        1   140
#> [390,]  68  15      1         13        1   130
#> [391,]  70  13      1          9        0   100
#> [392,]  72   6      0        180        1   130
#> [393,]  74   8      1          0        1    85
#> [394,]  69   2      1          0        1   110
#> [395,]  71   3      1          1        0   150
#> [396,]  74  20      0         20        1   180
#> [397,]  68   9      0        180        1   120
#> [398,]  73   3      1          0        1   136
#> [399,]  71  17      1         11        0   160
#> [400,]  71   8      1          7        0   149
#> [401,]  71   3      1          2        1   190
#> [402,]  73  10      1          8        0   106
#> [403,]  69  12      1          1        1   149
#> [404,]  72   5      1          3        1   160
#> [405,]  73   6      0        180        0   110
#> [406,]  72  15      1          0        1   150
#> [407,]  71   7      1          2        0   143
#> [408,]  72   8      1          0        1   140
#> [409,]  74   3      0          3        1   150
#> [410,]  73  17      1         11        0   140
#> [411,]  71  14      1         13        1   170
#> [412,]  74   7      1          0        1   117
#> [413,]  69   7      0        180        1   144
#> [414,]  70   8      0          8        0   120
#> [415,]  71  10      1          9        1   120
#> [416,]  73  10      1          9        1   146
#> [417,]  71   2      0         10        1   112
#> [418,]  73   1      0          1        1    80
#> [419,]  75  13      1          1        1   130
#> [420,]  71  11      1          8        0   110
#> [421,]  71   4      0          4        0   134
#> [422,]  72  15      1         12        1   120
#> [423,]  73  10      1          8        0   120
#> [424,]  72   7      0         57        1   145
#> [425,]  73  10      0        180        0   162
#> [426,]  70   3      0          3        0   150
#> [427,]  73   5      1          3        1   112
#> [428,]  76  25      1         12        1   170
#> [429,]  73  12      1         12        1   140
#> [430,]  72   2      0        180        0   120
#> [431,]  75   1      0        180        1   140
#> [432,]  72   4      1          0        1   197
#> [433,]  71   3      1          0        0   144
#> [434,]  73   5      0        180        0   126
#> [435,]  74  34      1          8        1   233
#> [436,]  76   3      1          0        1   120
#> [437,]  71  32      1         12        1   107
#> [438,]  72   5      0        180        0   154
#> [439,]  72   3      0        180        0   160
#> [440,]  75   3      1          1        0   180
#> [441,]  71  16      0        180        0   140
#> [442,]  73  10      1         10        0   124
#> [443,]  74   7      0        180        1   150
#> [444,]  74   3      0          3        1   128
#> [445,]  76   8      1          0        1   141
#> [446,]  73   6      0          6        1   114
#> [447,]  75  23      1         14        1   110
#> [448,]  72   4      1          3        0   160
#> [449,]  76  17      1          0        1   200
#> [450,]  73   4      1          3        1   125
#> [451,]  76  13      1         10        0   110
#> [452,]  75   4      1          0        1   122
#> [453,]  73  13      1         11        0   195
#> [454,]  74   8      1          0        1   105
#> [455,]  76  13      1          8        1   148
#> [456,]  74   6      0        180        0   160
#> [457,]  75   1      0          1        1   125
#> [458,]  74   2      0        180        0   111
#> [459,]  72   5      0        180        0   120
#> [460,]  76  44      1         10        0   105
#> [461,]  76   5      0        180        0   185
#> [462,]  73  33      1         12        1   175
#> [463,]  77   5      1          0        0   123
#> [464,]  77  12      1          9        1   100
#> [465,]  73  10      1          9        0   146
#> [466,]  77  12      0        180        0   130
#> [467,]  77   1      1          0        1    90
#> [468,]  76  12      1         11        1   120
#> [469,]  78   5      1          0        1   170
#> [470,]  73   7      1          0        0   174
#> [471,]  74   6      0         79        1   140
#> [472,]  75   3      1          1        1   171
#> [473,]  74   9      1          8        0   200
#> [474,]  75   6      0        180        0   150
#> [475,]  74   2      1          0        1   130
#> [476,]  78  18      0         18        1   144
#> [477,]  77   3      0        180        0   110
#> [478,]  76  29      0         47        0    90
#> [479,]  73   8      1          1        1   162
#> [480,]  73  11      1          2        1   110
#> [481,]  74   2      0        180        0   100
#> [482,]  78   7      0          7        1   133
#> [483,]  74   7      0          7        0   161
#> [484,]  79   6      0        180        0   170
#> [485,]  80  10      1          6        1   147
#> [486,]  78   0      0        180        1   212
#> [487,]  78  13      1          5        0   130
#> [488,]  75   5      0        119        1   150
#> [489,]  75  12      1          1        1   120
#> [490,]  78  15      0        180        1   270
#> [491,]  75  13      1          6        0   150
#> [492,]  76   1      0          1        1    83
#> [493,]  79   4      0         80        0   145
#> [494,]  78  12      1          9        0   150
#> [495,]  78   2      1          1        0   130
#> [496,]  77   2      1          0        1   143
#> [497,]  78  10      0        180        1   130
#> [498,]  76  11      1          0        0   120
#> [499,]  75  11      1          4        0   162
#> [500,]  75   3      0          3        0     0
#> [501,]  76   7      0         29        1   150
#> [502,]  79   8      0         32        1   120
#> [503,]  80   6      0          6        1   150
#> [504,]  78   6      1          0        1   240
#> [505,]  76   3      1          0        1   140
#> [506,]  78  11      1          1        1   140
#> [507,]  79  11      0        180        0   160
#> [508,]  79   2      1          0        1   121
#> [509,]  76   4      0          4        1   160
#> [510,]  76  10      1          8        0   180
#> [511,]  80   3      1          0        1   120
#> [512,]  75   2      1          1        1   204
#> [513,]  78  11      0        180        1   135
#> [514,]  77  31      1          3        1   161
#> [515,]  76   1      0          1        1    90
#> [516,]  78   7      1          0        1   110
#> [517,]  77   7      0        180        1   170
#> [518,]  79   4      1          0        1   120
#> [519,]  81   1      0        180        0   120
#> [520,]  77   9      1          4        0   141
#> [521,]  82   5      0          8        1   120
#> [522,]  80  40      1          0        1   138
#> [523,]  78   4      0         59        1   112
#> [524,]  76   7      0        161        0   151
#> [525,]  79  10      0         10        1   120
#> [526,]  81   4      1          2        1   126
#> [527,]  79  28      0        164        0   100
#> [528,]  80   6      0        173        1   160
#> [529,]  79   1      0         37        1   140
#> [530,]  78   7      0          7        1   147
#> [531,]  77  13      1          0        1   190
#> [532,]  78   4      0        180        0   175
#> [533,]  79   3      0          3        1   101
#> [534,]  76   1      0        166        0   131
#> [535,]  78  20      1          0        1   109
#> [536,]  80   1      0          1        0   100
#> [537,]  77  10      1          8        1   130
#> [538,]  77   5      0         85        0   188
#> [539,]  80   2      1          1        0   168
#> [540,]  79   6      0          6        0   152
#> [541,]  82   1      1          0        1    82
#> [542,]  79  10      0        180        1   150
#> [543,]  77   4      0        180        1    98
#> [544,]  81   1      0        108        0   129
#> [545,]  78  12      0        180        0   134
#> [546,]  79   1      0        125        0   193
#> [547,]  79   4      0          4        1   121
#> [548,]  83   9      1          5        1   170
#> [549,]  82   5      0        180        0   110
#> [550,]  79   7      1          6        0   130
#> [551,]  83   4      0        103        0    97
#> [552,]  81  11      1          8        0   160
#> [553,]  80  11      1          8        0   170
#> [554,]  78  23      1         10        1   145
#> [555,]  79   4      0          4        1   183
#> [556,]  78   9      1          4        1   120
#> [557,]  82   8      1          1        0   128
#> [558,]  81  15      0        180        1   140
#> [559,]  80   7      1          0        1   146
#> [560,]  84   5      1          1        1    85
#> [561,]  81  20      1          9        0   170
#> [562,]  83   8      0          8        0   115
#> [563,]  81  16      0         16        1   110
#> [564,]  80  11      1          8        0   110
#> [565,]  81   8      0        180        0   146
#> [566,]  79   0      1          0        1    96
#> [567,]  81   2      1          1        0   198
#> [568,]  83   2      0          2        1   155
#> [569,]  82   6      0        128        1   100
#> [570,]  84   4      0        167        0   198
#> [571,]  82  23      1          0        0   110
#> [572,]  81   1      0          1        1   150
#> [573,]  84   1      0         38        1   205
#> [574,]  83   3      0        180        0   174
#> [575,]  81   4      0         90        1   138
#> [576,]  79   9      1          8        0   150
#> [577,]  85   3      1          2        1   160
#> [578,]  84   4      0         89        1   129
#> [579,]  80   2      1          0        1   130
#> [580,]  79   4      0          4        1    60
#> [581,]  80   6      0         71        1   189
#> [582,]  83   1      0          1        1   100
#> [583,]  83   9      0        180        0   198
#> [584,]  79  14      1          0        0   110
#> [585,]  83   3      0        114        0    98
#> [586,]  83   2      0        154        0   130
#> [587,]  82   0      0          2        1   100
#> [588,]  85   9      1          6        1   160
#> [589,]  84  15      1         13        1   110
#> [590,]  81   1      0          1        1   145
#> [591,]  81  12      0         12        1   163
#> [592,]  82   5      1          0        1   146
#> [593,]  81   4      0          4        0   160
#> [594,]  83  12      1          2        1   170
#> [595,]  82   3      1          2        0   130
#> [596,]  82  15      1          0        0   183
#> [597,]  80   2      0         88        0   135
#> [598,]  86   8      0          8        1   132
#> [599,]  81  16      1          9        0   180
#> [600,]  86   3      0          3        1   140
#> [601,]  84   3      0        180        1   120
#> [602,]  81   2      1          0        1   118
#> [603,]  81   4      0        180        0   160
#> [604,]  82   1      0        180        1   193
#> [605,]  86   6      1          0        1   140
#> [606,]  84  16      0         70        1   150
#> [607,]  83  19      0         43        0   150
#> [608,]  83  10      1          0        1   190
#> [609,]  86   2      0        180        1   169
#> [610,]  88  14      1          3        1   130
#> [611,]  84   3      0          3        1   121
#> [612,]  83  13      1         12        0   170
#> [613,]  87   2      0        180        0   113
#> [614,]  84   3      0        180        1   170
#> [615,]  82   4      0          4        0   130
#> [616,]  86  13      0        177        0   163
#> [617,]  85   3      0          3        1   113
#> [618,]  86   6      0          6        1   117
#> [619,]  84  13      0         62        1   100
#> [620,]  88   4      0          4        0   100
#> [621,]  83  20      1          3        1   150
#> [622,]  88   4      0          4        1   115
#> [623,]  85  22      0         22        1   184
#> [624,]  86   9      1          7        1   142
#> [625,]  87   2      0        180        1   130
#> [626,]  86   6      0         46        0   173
#> [627,]  88   3      0        115        0   110
#> [628,]  88   2      0        180        1    68
#> [629,]  83   3      0          3        1   130
#> [630,]  87   8      0          8        1   157
#> [631,]  86  15      1          8        1   109
#> [632,]  89   4      0          4        1   153
#> [633,]  87   6      0        180        1   110
#> [634,]  87   1      0          1        0   170
#> [635,]  84   8      0        180        1   119
#> [636,]  87  29      0         29        1    97
#> [637,]  90  14      0         14        1   100
#> [638,]  87   2      0        180        0   160
#> [639,]  87   6      1          0        0   125
#> [640,]  91  10      0        145        0   135
#> [641,]  88   7      0         24        0   119
#> [642,]  88   8      0         50        1   154
#> [643,]  86  10      0        180        1   137
#> [644,]  90   4      1          0        0   121
#> [645,]  91   1      0          1        1    74
#> [646,]  87  43      0        178        1   130
#> [647,]  87   5      0         36        1   150
#> [648,]  92   1      0          1        1   167
#> [649,]  91   3      0         33        1   137
#> [650,]  89  12      1          0        1   130
#> [651,]  91   5      0        169        1   176
#> [652,]  89  52      0         52        1   130
#> [653,]  92   7      0          7        1   110
#> [654,]  89   4      0          4        1   159
#> [655,]  91   0      0          0        0     0
#> [656,]  89  14      0        180        1    84
#> [657,]  91   4      1          0        1   120
#> [658,]  90  19      1         11        1   129
#> [659,]  93   8      0        179        1   110
#> [660,]  94   8      0          8        1   142
#> [661,]  91   1      0        180        0   158
#> [662,]  90  16      0         16        1   106
#> [663,]  96   3      0         12        1    97
#> [664,]  95   8      1          5        1   150
#> [665,]  94   3      0         26        1   144
#> [666,]  91  12      0         53        1   212
#> [667,]  92   5      0         69        0   139
#> [668,]  92   2      0          2        0   112
#> [669,]  93   4      0        180        1   135
#> [670,]  96   3      1          0        1   104
#> 
#> $y
#>   [1]   5.0+   2.0+   5.0+ 180.0+   5.0+ 180.0+   2.0+ 115.0  180.0+ 180.0+
#>  [11]  12.0    5.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+   5.0+   2.0+
#>  [21] 180.0+ 180.0+ 180.0+ 180.0+ 180.0+   2.0+ 180.0+ 180.0+ 180.0+ 180.0+
#>  [31] 180.0+   5.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 150.0  180.0+
#>  [41] 180.0+ 180.0+ 180.0+   6.0+ 180.0+ 180.0+ 180.0+  73.0    5.0+ 161.0+
#>  [51] 180.0+ 180.0+   5.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+
#>  [61] 180.0+  10.0+ 172.0+ 180.0+ 180.0+ 180.0+ 180.0+ 179.0+ 180.0+ 180.0+
#>  [71] 180.0+   4.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+   7.0 
#>  [81]  36.0   88.0+ 180.0+  77.0  180.0+ 180.0+   5.0  180.0+ 180.0+ 180.0+
#>  [91] 180.0+   4.0+  85.0  180.0+  99.0  180.0+  16.0+ 152.0+   7.0+ 180.0+
#> [101] 180.0+  13.0+ 171.0+ 180.0+ 180.0+ 174.0+  28.0  180.0+   9.0+ 180.0+
#> [111] 180.0+ 180.0+   2.0  180.0+   7.0+ 180.0+ 180.0+ 180.0+ 180.0+  16.0+
#> [121]  16.0   15.0+ 180.0+  12.0+ 134.0+ 180.0+   8.0    2.0    3.0+ 180.0+
#> [131] 180.0+ 180.0+ 140.0  180.0+   1.0  165.0  180.0+ 180.0+ 180.0+ 180.0+
#> [141]   8.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 171.0+  15.0    5.0+ 180.0+
#> [151]   4.0+ 147.0+ 180.0+   5.0+   4.0+ 180.0+   9.0+   1.0  180.0+ 180.0+
#> [161]   2.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+  64.0  180.0+
#> [171] 180.0+ 180.0+   9.0+   0.5  180.0+ 171.0+   3.0    1.0  180.0+ 180.0+
#> [181] 180.0+  10.0+ 180.0+ 180.0+  17.0   45.0   19.0  180.0+ 180.0+   9.0+
#> [191] 180.0+ 180.0+   8.0  180.0+   1.0+  15.0  180.0+ 180.0+  77.0    8.0+
#> [201] 180.0+ 180.0+ 170.0   94.0  180.0+ 169.0    7.0+   6.0  180.0+ 180.0+
#> [211] 180.0+ 180.0+   3.0+ 180.0+ 180.0+ 180.0+  28.0   13.0+ 180.0+ 180.0+
#> [221] 180.0+   1.0  180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+   7.0+
#> [231]  22.0  180.0+  84.0  180.0+ 180.0+ 180.0+ 180.0+ 180.0+   3.0+ 167.0 
#> [241] 180.0+  17.0  180.0+  12.0  180.0+ 180.0+  14.0+  36.0    3.0+ 180.0+
#> [251] 180.0+ 180.0+ 180.0+   0.5  180.0+ 180.0+  12.0+ 180.0+ 180.0+ 180.0+
#> [261] 180.0+  12.0    9.0    3.0  180.0+ 180.0+  11.0+ 180.0+ 180.0+ 180.0+
#> [271]   3.0+ 103.0   15.0    5.0+  13.0  166.0+  14.0+   3.0  180.0+   3.0+
#> [281] 175.0+ 180.0+ 180.0+   8.0   16.0  180.0+   1.0  180.0+ 180.0+ 123.0+
#> [291]  18.0  180.0+  79.0  180.0+   4.0+  15.0  180.0+ 180.0+ 174.0+ 180.0+
#> [301] 180.0+ 180.0+ 175.0  180.0+  10.0  180.0+ 180.0+ 180.0+  19.0+ 179.0+
#> [311]  11.0+ 180.0+   0.5    7.0+ 152.0+ 180.0+  21.0+ 180.0+  18.0+ 101.0 
#> [321]   4.0    5.0    7.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 174.0+ 180.0+
#> [331] 180.0+ 180.0+ 180.0+ 180.0+  14.0+ 180.0+  45.0    3.0+ 180.0+  36.0 
#> [341]   5.0+ 180.0+ 180.0+  97.0    8.0+   2.0+ 180.0+  18.0  180.0+ 180.0+
#> [351]   7.0  180.0+   7.0   13.0+ 123.0  180.0+ 180.0+  51.0   19.0  180.0+
#> [361]  60.0   76.0  180.0+ 132.0  180.0+ 180.0+   7.0+ 124.0    9.0  180.0+
#> [371] 180.0+ 180.0+  12.0  180.0+ 180.0+   2.0   76.0  173.0+ 180.0+ 180.0+
#> [381]  28.0  180.0+ 180.0+  16.0+ 180.0+ 180.0+   6.0  180.0+   7.0+  15.0 
#> [391]  13.0+ 180.0+ 180.0+   2.0    3.0+  20.0  180.0+ 180.0+ 180.0+   8.0 
#> [401]   3.0   87.0   12.0  180.0+ 180.0+ 180.0+ 180.0+ 180.0+   3.0  180.0+
#> [411]  14.0+ 180.0+ 180.0+   8.0+ 179.0+ 180.0+  10.0    1.0   13.0  180.0+
#> [421]   4.0+ 180.0+  10.0   57.0  180.0+   3.0+   5.0  180.0+  12.0  180.0+
#> [431] 180.0+ 180.0+ 180.0+ 180.0+  34.0  180.0+ 177.0+ 180.0+ 180.0+ 180.0+
#> [441] 180.0+  10.0  180.0+   3.0  180.0+   6.0  180.0+ 180.0+  17.0+ 180.0+
#> [451] 174.0+   4.0  180.0+ 180.0+ 180.0+ 180.0+   1.0  180.0+ 180.0+ 180.0+
#> [461] 180.0+  33.0    5.0  180.0+ 180.0+ 180.0+   1.0   12.0  180.0+   7.0+
#> [471]  79.0    3.0  168.0+ 180.0+ 176.0+  18.0  180.0+  47.0  180.0+  11.0 
#> [481] 180.0+   7.0    7.0  180.0+  10.0  180.0+ 172.0  119.0   12.0  180.0+
#> [491] 180.0+   1.0   80.0  180.0+ 180.0+   2.0  180.0+  11.0  152.0+   3.0 
#> [501]  29.0   32.0    6.0  180.0+   3.0+ 180.0+ 180.0+ 180.0+   4.0   10.0+
#> [511]   3.0+   2.0+ 180.0+ 171.0    1.0   43.0  180.0+ 138.0  180.0+  71.0 
#> [521]   8.0   40.0   59.0  161.0   10.0+  93.0  164.0  173.0   37.0    7.0+
#> [531]  22.0  180.0+   3.0  166.0+  20.0+   1.0   10.0   85.0   10.0    6.0+
#> [541]   1.0  180.0+ 180.0+ 108.0  180.0+ 125.0    4.0    9.0+ 180.0+ 180.0+
#> [551] 103.0  180.0+ 169.0   70.0    4.0  180.0+ 180.0+ 180.0+   7.0+ 180.0+
#> [561]  20.0    8.0+  16.0  180.0+ 180.0+   0.5  180.0+   2.0  128.0  167.0 
#> [571]  62.0    1.0   38.0  180.0+  90.0  180.0+ 180.0+  89.0  180.0+   4.0 
#> [581]  71.0    1.0  180.0+ 180.0+ 114.0  154.0    2.0  180.0+ 180.0+   1.0 
#> [591]  12.0    5.0+   4.0+  77.0    3.0   83.0   88.0    8.0  180.0+   3.0 
#> [601] 180.0+ 180.0+ 180.0+ 180.0+   6.0   70.0   43.0  180.0+ 180.0+  14.0 
#> [611]   3.0   13.0  180.0+ 180.0+   4.0  177.0    3.0+   6.0+  62.0    4.0+
#> [621]  20.0    4.0   22.0   11.0  180.0+  46.0  115.0  180.0+   3.0+   8.0+
#> [631] 180.0+   4.0  180.0+   1.0+ 180.0+  29.0   14.0  180.0+  25.0  145.0 
#> [641]  24.0   50.0  180.0+   4.0    1.0  178.0+  36.0    1.0   33.0  180.0+
#> [651] 169.0   52.0    7.0    4.0    0.5  180.0+   4.0  180.0+ 179.0+   8.0+
#> [661] 180.0+  16.0   12.0    8.0   26.0   53.0   69.0    2.0  180.0+   3.0 
#> 
#> $weights
#> NULL
#> 
#> $offset
#> NULL
#> 


# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)
#> Warning: Multiple lambdas have been fit. Lambda will be set to 0.01 (see parameter 's').

# Score the predictions
predictions$score()
#> surv.cindex 
#>   0.8473034