Skip to contents

Generalized linear models with elastic net regularization. Calls glmnet::glmnet() from package glmnet.

Initial parameter values

  • family is set to "cox" and cannot be changed.

Prediction types

This learner returns three prediction types:

  1. lp: a vector containing the linear predictors (relative risk scores), where each score corresponds to a specific test observation. Calculated using glmnet::predict.coxnet().

  2. crank: same as lp.

  3. distr: a survival matrix in two dimensions, where observations are represented in rows and time points in columns. Calculated using glmnet::survfit.coxnet(). Parameters stype and ctype relate to how lp predictions are transformed into survival predictions and are described in survival::survfit.coxph(). By default the Breslow estimator is used for computing the baseline hazard.

Caution: This learner is different to learners calling glmnet::cv.glmnet() in that it does not use the internal optimization of parameter lambda. Instead, lambda needs to be tuned by the user (e.g., via mlr3tuning). When lambda is tuned, the glmnet will be trained for each tuning iteration. While fitting the whole path of lambdas would be more efficient, as is done by default in glmnet::glmnet(), tuning/selecting the parameter at prediction time (using parameter s) is currently not supported in mlr3 (at least not in efficient manner). Tuning the s parameter is, therefore, currently discouraged.

When the data are i.i.d. and efficiency is key, we recommend using the respective auto-tuning counterpart in mlr_learners_surv.cv_glmnet(). However, in some situations this is not applicable, usually when data are imbalanced or not i.i.d. (longitudinal, time-series) and tuning requires custom resampling strategies (blocked design, stratification).

Dictionary

This Learner can be instantiated via lrn():

lrn("surv.glmnet")

Meta Information

  • Task type: “surv”

  • Predict Types: “crank”, “distr”, “lp”

  • Feature Types: “logical”, “integer”, “numeric”

  • Required Packages: mlr3, mlr3proba, mlr3extralearners, glmnet

Parameters

IdTypeDefaultLevelsRange
alignmentcharacterlambdalambda, fraction-
alphanumeric1\([0, 1]\)
bignumeric9.9e+35\((-\infty, \infty)\)
devmaxnumeric0.999\([0, 1]\)
dfmaxinteger-\([0, \infty)\)
epsnumeric1e-06\([0, 1]\)
epsnrnumeric1e-08\([0, 1]\)
exactlogicalFALSETRUE, FALSE-
excludeuntyped--
exmxnumeric250\((-\infty, \infty)\)
fdevnumeric1e-05\([0, 1]\)
gammauntyped--
groupedlogicalTRUETRUE, FALSE-
interceptlogicalTRUETRUE, FALSE-
keeplogicalFALSETRUE, FALSE-
lambdauntyped--
lambda.min.rationumeric-\([0, 1]\)
lower.limitsuntyped-Inf-
maxitinteger100000\([1, \infty)\)
mnlaminteger5\([1, \infty)\)
mxitinteger100\([1, \infty)\)
mxitnrinteger25\([1, \infty)\)
newoffsetuntyped--
nlambdainteger100\([1, \infty)\)
offsetuntypedNULL-
parallellogicalFALSETRUE, FALSE-
penalty.factoruntyped--
pmaxinteger-\([0, \infty)\)
pminnumeric1e-09\([0, 1]\)
precnumeric1e-10\((-\infty, \infty)\)
predict.gammanumericgamma.1se\((-\infty, \infty)\)
relaxlogicalFALSETRUE, FALSE-
snumeric0.01\([0, \infty)\)
standardizelogicalTRUETRUE, FALSE-
threshnumeric1e-07\([0, \infty)\)
trace.itinteger0\([0, 1]\)
type.logisticcharacterNewtonNewton, modified.Newton-
type.multinomialcharacterungroupedungrouped, grouped-
upper.limitsuntypedInf-
stypeinteger2\([1, 2]\)
ctypeinteger-\([1, 2]\)

References

Friedman J, Hastie T, Tibshirani R (2010). “Regularization Paths for Generalized Linear Models via Coordinate Descent.” Journal of Statistical Software, 33(1), 1–22. doi:10.18637/jss.v033.i01 .

See also

Author

be-marc

Super classes

mlr3::Learner -> mlr3proba::LearnerSurv -> LearnerSurvGlmnet

Methods

Inherited methods


Method new()

Creates a new instance of this R6 class.

Usage


Method selected_features()

Returns the set of selected features as reported by glmnet::predict.glmnet() with type set to "nonzero".

Usage

LearnerSurvGlmnet$selected_features(lambda = NULL)

Arguments

lambda

(numeric(1))
Custom lambda, defaults to the active lambda depending on parameter set.

Returns

(character()) of feature names.


Method clone()

The objects of this class are cloneable with this method.

Usage

LearnerSurvGlmnet$clone(deep = FALSE)

Arguments

deep

Whether to make a deep clone.

Examples

# Define the Learner
learner = mlr3::lrn("surv.glmnet")
print(learner)
#> <LearnerSurvGlmnet:surv.glmnet>: Regularized Generalized Linear Model
#> * Model: -
#> * Parameters: list()
#> * Packages: mlr3, mlr3proba, mlr3extralearners, glmnet
#> * Predict Types:  [crank], distr, lp
#> * Feature Types: logical, integer, numeric
#> * Properties: selected_features, weights

# Define a Task
task = mlr3::tsk("grace")

# Create train and test set
ids = mlr3::partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)
#> $model
#> 
#> Call:  (if (cv) glmnet::cv.glmnet else glmnet::glmnet)(x = data, y = target,      family = "cox") 
#> 
#>    Df  %Dev   Lambda
#> 1   0  0.00 0.163900
#> 2   2  0.81 0.149400
#> 3   2  1.68 0.136100
#> 4   3  4.42 0.124000
#> 5   3  7.35 0.113000
#> 6   3  9.52 0.103000
#> 7   3 11.20 0.093810
#> 8   3 12.54 0.085470
#> 9   3 13.64 0.077880
#> 10  3 14.55 0.070960
#> 11  3 15.30 0.064660
#> 12  3 15.93 0.058910
#> 13  3 16.46 0.053680
#> 14  3 16.91 0.048910
#> 15  3 17.29 0.044570
#> 16  4 17.64 0.040610
#> 17  5 17.95 0.037000
#> 18  5 18.23 0.033710
#> 19  5 18.47 0.030720
#> 20  5 18.67 0.027990
#> 21  5 18.84 0.025500
#> 22  5 18.98 0.023240
#> 23  5 19.10 0.021170
#> 24  5 19.20 0.019290
#> 25  5 19.29 0.017580
#> 26  5 19.36 0.016020
#> 27  5 19.43 0.014590
#> 28  5 19.48 0.013300
#> 29  5 19.52 0.012120
#> 30  5 19.56 0.011040
#> 31  5 19.59 0.010060
#> 32  5 19.62 0.009165
#> 33  5 19.64 0.008351
#> 34  5 19.66 0.007609
#> 35  5 19.67 0.006933
#> 36  5 19.68 0.006317
#> 37  5 19.70 0.005756
#> 38  5 19.70 0.005245
#> 39  5 19.71 0.004779
#> 40  5 19.72 0.004354
#> 41  5 19.72 0.003967
#> 42  5 19.73 0.003615
#> 43  5 19.73 0.003294
#> 
#> $x
#>        age los revasc revascdays stchange sysbp
#>   [1,]  28   9      0        180        1   107
#>   [2,]  32   5      1          0        1   121
#>   [3,]  35   5      1          2        0   172
#>   [4,]  35  10      1          9        0   106
#>   [5,]  34   5      0          5        0   120
#>   [6,]  35   2      0        180        0   121
#>   [7,]  37   9      0        180        1   151
#>   [8,]  38  13      1          0        1   161
#>   [9,]  38   2      0        115        0   150
#>  [10,]  36   1      0        180        1   155
#>  [11,]  35   0      0        180        1   119
#>  [12,]  36   5      1          0        1   115
#>  [13,]  33   6      1          1        1   115
#>  [14,]  38  16      1         10        0   160
#>  [15,]  38  12      1         11        1    92
#>  [16,]  40  12      1          9        0   153
#>  [17,]  37   1      1          0        1   146
#>  [18,]  40   2      1          1        1   148
#>  [19,]  42   2      0        180        1   100
#>  [20,]  38   5      1          3        0   125
#>  [21,]  42   2      0          2        0   140
#>  [22,]  40   6      0        180        1   138
#>  [23,]  43   3      1          0        1   100
#>  [24,]  40   1      1          0        1   145
#>  [25,]  43   4      1          0        1   130
#>  [26,]  40   3      1          1        0   170
#>  [27,]  42   2      0        180        1   124
#>  [28,]  44   5      1          1        0   170
#>  [29,]  45   3      0        180        1   154
#>  [30,]  41  10      1          8        0   150
#>  [31,]  41  13      1          1        0   140
#>  [32,]  45   9      1          7        0   110
#>  [33,]  44   2      1          1        1   150
#>  [34,]  43   2      0        180        1   140
#>  [35,]  46  15      0        180        0   120
#>  [36,]  46   2      1          1        0   126
#>  [37,]  47   4      1          3        0   118
#>  [38,]  48  15      0        180        1   160
#>  [39,]  46   7      1          2        0   166
#>  [40,]  43  29      0        180        1   180
#>  [41,]  43  10      0        180        0   185
#>  [42,]  46  13      1         10        0   100
#>  [43,]  47   4      1          3        1   160
#>  [44,]  43   3      1          0        1   124
#>  [45,]  45   8      1          0        1   117
#>  [46,]  49   5      0         73        1   136
#>  [47,]  45   5      0          5        0   141
#>  [48,]  46   6      1          0        1   100
#>  [49,]  47   2      0        180        0   108
#>  [50,]  44   9      1          8        1   135
#>  [51,]  45   5      0        180        1   190
#>  [52,]  46   5      1          3        0   130
#>  [53,]  46   4      0        180        1   121
#>  [54,]  44   2      0        180        0   142
#>  [55,]  46  15      0        180        1   120
#>  [56,]  45   9      1          0        1   145
#>  [57,]  48   3      0        180        0   154
#>  [58,]  48  12      1         11        0   200
#>  [59,]  47   9      1          6        0   170
#>  [60,]  46   3      1          0        1   119
#>  [61,]  47  10      0         10        1   140
#>  [62,]  50   1      1          0        1   129
#>  [63,]  48   2      1          0        0   184
#>  [64,]  50   4      1          1        0   125
#>  [65,]  50   6      1          2        1   140
#>  [66,]  49   7      1          7        1   110
#>  [67,]  46   3      1          1        1   140
#>  [68,]  50   7      0        180        1   110
#>  [69,]  49   2      0          2        0   105
#>  [70,]  51   1      0          1        1   145
#>  [71,]  47   2      0        180        0   150
#>  [72,]  49  23      0        179        1   112
#>  [73,]  52   2      0        180        1   170
#>  [74,]  50   7      1          0        1    92
#>  [75,]  50   1      1          0        0   150
#>  [76,]  50   9      0        180        0   130
#>  [77,]  47   8      0        180        0   160
#>  [78,]  47   6      0        180        1   162
#>  [79,]  52   2      0        180        0   155
#>  [80,]  50   4      1          1        0   150
#>  [81,]  48   7      1          0        1   110
#>  [82,]  53   8      0         36        1   160
#>  [83,]  48  17      1         10        0   111
#>  [84,]  52   4      1          4        0   152
#>  [85,]  49   9      1          3        0   102
#>  [86,]  49  15      0        180        1   160
#>  [87,]  53   5      0        180        1   140
#>  [88,]  54  17      1         12        1   102
#>  [89,]  53   5      0         77        0   159
#>  [90,]  53   7      1          0        0   199
#>  [91,]  54   6      1          3        0   129
#>  [92,]  51   3      1          1        0   140
#>  [93,]  50  14      1         13        0   170
#>  [94,]  49   5      1          2        1   150
#>  [95,]  53   4      0          4        0   140
#>  [96,]  52  14      1          7        1   200
#>  [97,]  48   6      0        180        0   160
#>  [98,]  48  11      1         10        0   120
#>  [99,]  53   4      1          0        1   156
#> [100,]  51  13      0         99        1   160
#> [101,]  54   9      1          0        1   138
#> [102,]  49  16      0         16        0   125
#> [103,]  55   3      1          1        0   150
#> [104,]  54  23      1         10        0   131
#> [105,]  52   7      1          2        0   154
#> [106,]  55   6      1          2        1   114
#> [107,]  55   4      1          2        0   150
#> [108,]  52   4      0        180        1   180
#> [109,]  50   5      1          4        1   150
#> [110,]  54   4      1          0        1   121
#> [111,]  52   4      0        180        0   183
#> [112,]  50   3      0        174        1   153
#> [113,]  55  28      1         13        1   160
#> [114,]  50   7      1          1        0   156
#> [115,]  53   9      0          9        1    95
#> [116,]  56   4      1          1        1   130
#> [117,]  52   5      0        175        1   117
#> [118,]  55   1      0        180        0   127
#> [119,]  55   2      0          2        0   145
#> [120,]  56   2      0        180        0   132
#> [121,]  53  18      1          9        1   150
#> [122,]  54   3      0        180        1   180
#> [123,]  55   6      0        180        0   170
#> [124,]  52  16      0         16        0   152
#> [125,]  53  10      1          9        0   172
#> [126,]  52  16      1         14        0   170
#> [127,]  55   6      0        180        1   100
#> [128,]  55   6      1          5        1   138
#> [129,]  55   2      0        134        1   140
#> [130,]  56   3      0          8        1   139
#> [131,]  52   9      1          3        0   170
#> [132,]  54   2      1          1        1   176
#> [133,]  57   5      1          3        1   138
#> [134,]  57   1      0          1        1   100
#> [135,]  56   4      1          0        1   140
#> [136,]  52   2      0        180        0   140
#> [137,]  55  11      1          7        0   104
#> [138,]  52  15      1         14        0   130
#> [139,]  56  14      1         11        0   130
#> [140,]  53   3      1          0        1   200
#> [141,]  57  10      0        180        1   170
#> [142,]  54   5      0        180        1   108
#> [143,]  57   0      0          0        1   150
#> [144,]  53  21      1         13        1   130
#> [145,]  59   3      1          1        0   172
#> [146,]  58   6      1          0        1    90
#> [147,]  55   9      1          2        1   147
#> [148,]  56   5      0          5        1   150
#> [149,]  57   4      1          2        1   185
#> [150,]  53   4      0        147        1   145
#> [151,]  57  11      1         10        1   129
#> [152,]  55   3      1          2        0   140
#> [153,]  55   5      0          5        1   131
#> [154,]  56   4      0          4        0   164
#> [155,]  59  15      1         10        0   140
#> [156,]  58   1      1          1        1   200
#> [157,]  55   5      1          0        0   140
#> [158,]  56   7      1          5        1   120
#> [159,]  55   2      0          2        0   106
#> [160,]  59   9      1          1        1   125
#> [161,]  57   2      0          2        1   120
#> [162,]  60   5      1          1        0   138
#> [163,]  57   5      0        180        1   130
#> [164,]  58  11      1          9        1   124
#> [165,]  55   5      1          0        1   160
#> [166,]  57  10      1          9        0   103
#> [167,]  59   6      1          0        1   140
#> [168,]  59   5      0        180        1   155
#> [169,]  59   4      1          0        1   152
#> [170,]  58  26      1          0        1   189
#> [171,]  61   9      0          9        1   160
#> [172,]  58   4      1          3        0   120
#> [173,]  59   2      1          1        0   140
#> [174,]  61   9      1          8        0   150
#> [175,]  61   3      1          2        1   102
#> [176,]  58   1      0          1        1   100
#> [177,]  57  13      1         10        0   110
#> [178,]  57   4      1          3        0   138
#> [179,]  61   3      0         17        0   143
#> [180,]  56  14      0         45        0   130
#> [181,]  56  13      1          6        1   158
#> [182,]  56  18      1         11        1   165
#> [183,]  55   4      1          3        1   160
#> [184,]  58  11      0        172        1   135
#> [185,]  55   9      1          7        1   135
#> [186,]  61   4      1          0        1   115
#> [187,]  57  15      1         13        1   110
#> [188,]  59  10      0        180        0   160
#> [189,]  61   8      0         77        0   120
#> [190,]  61  13      0         13        0   210
#> [191,]  58   8      1          5        0   152
#> [192,]  62  10      1          0        1   153
#> [193,]  57   3      1          0        0   100
#> [194,]  58   8      1          3        1   150
#> [195,]  57   7      0        169        0   180
#> [196,]  61   7      0          7        1   150
#> [197,]  60   7      0          7        0   147
#> [198,]  61   6      0          6        0   134
#> [199,]  59  13      1          2        0   198
#> [200,]  57  12      1          9        1   120
#> [201,]  60  17      1          8        1   140
#> [202,]  58   3      1          0        1   146
#> [203,]  62   4      1          3        0   173
#> [204,]  59  16      1          9        1   133
#> [205,]  63   6      0         28        1   120
#> [206,]  61  13      0         13        0   120
#> [207,]  61   5      0          5        1   110
#> [208,]  61   5      0          5        1   160
#> [209,]  58  11      1          9        0   179
#> [210,]  57   2      1          1        0   159
#> [211,]  62   1      1          0        1   172
#> [212,]  58   7      0        180        1   150
#> [213,]  63   3      1          1        0   180
#> [214,]  63   4      1          3        0   222
#> [215,]  62   3      0        180        1   105
#> [216,]  63  15      1         10        1   126
#> [217,]  64   4      0        180        0   130
#> [218,]  63   4      1          1        0   155
#> [219,]  59   8      0        180        1   140
#> [220,]  61   9      1          9        1   150
#> [221,]  62   7      0          7        0   150
#> [222,]  59   1      0         22        1   162
#> [223,]  58   2      0        180        0   127
#> [224,]  59   4      0        180        0   196
#> [225,]  60   7      1          5        1   141
#> [226,]  60   7      0          7        0   140
#> [227,]  59   5      1          1        0   148
#> [228,]  60   7      1          1        1    90
#> [229,]  65  13      0        180        1   100
#> [230,]  63   1      0          1        0   162
#> [231,]  59   4      0          4        0   149
#> [232,]  60   3      0          3        0   168
#> [233,]  64  10      1          9        0   160
#> [234,]  62   6      0          6        0   120
#> [235,]  63  12      1         10        0   200
#> [236,]  59  10      0        180        1   130
#> [237,]  60   8      0         17        1   130
#> [238,]  64  12      1         11        0   160
#> [239,]  66   1      1          0        1   120
#> [240,]  63  14      1          9        0   123
#> [241,]  66   3      1          1        0   127
#> [242,]  61  10      1          2        1   194
#> [243,]  64  32      1          9        1   160
#> [244,]  63  12      1          9        0   114
#> [245,]  63   7      0        180        0   120
#> [246,]  66   5      1          0        1   110
#> [247,]  65   8      1          0        0   168
#> [248,]  64   0      0          0        1    90
#> [249,]  60   6      0        180        0   130
#> [250,]  64  21      1         10        0   190
#> [251,]  61  12      1         11        0   154
#> [252,]  65   3      0        180        1   190
#> [253,]  63  16      1          7        1   110
#> [254,]  64   7      0        180        1   120
#> [255,]  66   6      1          1        1   130
#> [256,]  63  12      0         12        1   150
#> [257,]  65   6      0          9        0   112
#> [258,]  65   3      1          0        1    80
#> [259,]  63   5      1          4        0   170
#> [260,]  62  13      1         11        0   180
#> [261,]  67  11      0         11        1   100
#> [262,]  64   2      0          2        0   201
#> [263,]  66  18      1          5        0   142
#> [264,]  66  16      1         11        1   169
#> [265,]  61  14      1          5        0   140
#> [266,]  61  15      1         10        0   130
#> [267,]  63   3      1          2        0   120
#> [268,]  63   2      1          0        0   140
#> [269,]  64  19      1          8        1   160
#> [270,]  65  15      1         11        1   160
#> [271,]  64  13      1         12        1   150
#> [272,]  64   6      1          0        1   125
#> [273,]  66   7      1          0        1   115
#> [274,]  66  13      1          0        0   118
#> [275,]  64  14      1         13        1   150
#> [276,]  65   3      0          3        0   105
#> [277,]  64   0      0          0        1   148
#> [278,]  67   4      1          3        0   130
#> [279,]  66   6      1          0        1   140
#> [280,]  65   2      1          1        1   170
#> [281,]  64  10      1          9        1   110
#> [282,]  67   8      1          1        1   130
#> [283,]  63  10      0         16        1   160
#> [284,]  66  14      0        180        0   130
#> [285,]  64   1      0          1        1   120
#> [286,]  65  17      1         14        1   100
#> [287,]  63   8      1          1        1   162
#> [288,]  65  18      1          3        0   120
#> [289,]  63   1      1          0        1   155
#> [290,]  67  11      0         11        0   150
#> [291,]  68  11      0        180        0   160
#> [292,]  68  14      0         79        0   172
#> [293,]  65  15      1         12        1   150
#> [294,]  69  12      0         15        1   140
#> [295,]  66  15      1         13        1   160
#> [296,]  66   9      1          8        0   130
#> [297,]  65   8      1          0        1    90
#> [298,]  69   1      1          0        0   170
#> [299,]  68  10      1         10        1   150
#> [300,]  65   1      1          0        0   133
#> [301,]  63   2      1          0        0    99
#> [302,]  65   6      0          6        0    80
#> [303,]  65  10      1          1        1   148
#> [304,]  66  19      1         12        1   150
#> [305,]  67  12      1         12        0   160
#> [306,]  69   6      0         99        1   140
#> [307,]  65   4      1          1        0   130
#> [308,]  64   4      0        179        0   160
#> [309,]  70  15      1         12        1   132
#> [310,]  64   4      0        180        1   140
#> [311,]  67   2      0         18        0   131
#> [312,]  66   7      1          5        1   131
#> [313,]  66   4      0        180        0   177
#> [314,]  68   4      1          0        1   160
#> [315,]  65  13      1         12        1   130
#> [316,]  69   8      0         93        0   140
#> [317,]  64  21      0         21        1   155
#> [318,]  66   6      0        180        0   140
#> [319,]  68  18      1          0        1   160
#> [320,]  65   6      0        101        1   115
#> [321,]  68   4      0          4        1   190
#> [322,]  70   7      1          0        1   190
#> [323,]  68   7      0        150        0   210
#> [324,]  67   2      0        180        0   128
#> [325,]  66   9      1          3        1   151
#> [326,]  66   1      1          1        1   165
#> [327,]  69   8      0        180        1   153
#> [328,]  66   4      0        180        0   130
#> [329,]  67  10      1          9        0   200
#> [330,]  67   6      1          4        0   130
#> [331,]  68  18      1         14        1   170
#> [332,]  65   2      0        180        0   130
#> [333,]  68   7      1          0        1   150
#> [334,]  69   3      1          2        0   151
#> [335,]  67  14      1         13        0   130
#> [336,]  65  14      1         13        1   150
#> [337,]  69   8      0        180        1   180
#> [338,]  66   2      0          2        1   228
#> [339,]  69   5      0          5        1   142
#> [340,]  71   3      0        103        0   133
#> [341,]  67   1      0         36        1   104
#> [342,]  68   6      0        180        0   145
#> [343,]  69   8      1          5        1   195
#> [344,]  72   3      1          0        1   132
#> [345,]  72   7      0          7        1   110
#> [346,]  69   8      1          7        1   108
#> [347,]  67   3      0        180        0   110
#> [348,]  69  19      0        180        0   130
#> [349,]  68  18      0         18        1   100
#> [350,]  67  14      0        172        1   140
#> [351,]  69  11      1          0        1   120
#> [352,]  67   7      1          4        0   122
#> [353,]  69   4      1          3        0   132
#> [354,]  69   8      1          2        0   121
#> [355,]  67  13      1          9        0   130
#> [356,]  70   9      0        180        1   142
#> [357,]  68   3      0         19        0   135
#> [358,]  67  12      1          8        0   120
#> [359,]  67   4      0         60        1   136
#> [360,]  69   5      0         76        0   120
#> [361,]  67   8      1          0        1   130
#> [362,]  68  10      1          8        1   160
#> [363,]  70  35      1          0        1   105
#> [364,]  72  30      1          0        1   145
#> [365,]  73  20      1          0        1   170
#> [366,]  71   6      0          9        0   120
#> [367,]  72  12      1         10        0   170
#> [368,]  67   8      0        180        1   170
#> [369,]  67   5      1          0        1   147
#> [370,]  67   9      0        180        0   158
#> [371,]  70   5      0        180        0   150
#> [372,]  72   2      0          2        1   100
#> [373,]  67   4      1          1        0   134
#> [374,]  72   6      1          5        0   115
#> [375,]  68  23      0        180        1   220
#> [376,]  70   3      0        180        0   121
#> [377,]  69   3      0        180        0   220
#> [378,]  68   4      1          3        0   210
#> [379,]  72   5      0         28        0   120
#> [380,]  71   5      0        180        0   191
#> [381,]  73   6      0        180        1   117
#> [382,]  69  16      1         10        1   140
#> [383,]  69   8      1          1        0   164
#> [384,]  69   1      1          0        0   155
#> [385,]  72   8      1          1        1   150
#> [386,]  71   2      1          0        1   180
#> [387,]  73   7      0          7        1   140
#> [388,]  70   3      0          3        1   159
#> [389,]  70  13      1          9        0   100
#> [390,]  73   0      0        180        1   161
#> [391,]  73   4      0        180        1   154
#> [392,]  71   3      1          1        0   150
#> [393,]  74  20      0         20        1   180
#> [394,]  68   9      0        180        1   120
#> [395,]  71  20      1         10        0   140
#> [396,]  74   0      1          0        1    90
#> [397,]  73   3      1          0        1   136
#> [398,]  70   5      1          0        1   190
#> [399,]  71  17      1         11        0   160
#> [400,]  71   8      1          7        0   149
#> [401,]  73  10      1          8        0   106
#> [402,]  69  12      1          1        1   149
#> [403,]  70  26      1         11        1   120
#> [404,]  74   4      0          4        0   120
#> [405,]  73   4      0         58        1   160
#> [406,]  70   3      0        180        1   154
#> [407,]  73   6      0        180        0   110
#> [408,]  71   7      1          2        0   143
#> [409,]  72   8      1          0        1   140
#> [410,]  74   3      0          3        1   150
#> [411,]  71  13      1          8        0   121
#> [412,]  70   4      1          0        1   140
#> [413,]  71  14      1         13        1   170
#> [414,]  69   7      0        180        1   144
#> [415,]  72  15      1         13        0   156
#> [416,]  70   8      0          8        0   120
#> [417,]  71  10      1          9        1   120
#> [418,]  75   2      1          1        0   145
#> [419,]  73  10      1          9        1   146
#> [420,]  72  10      1          9        1   160
#> [421,]  73  10      1         10        1   120
#> [422,]  74  15      1          9        1   179
#> [423,]  73   1      0          1        1    80
#> [424,]  75  13      1          1        1   130
#> [425,]  71  11      1          8        0   110
#> [426,]  71   4      0          4        0   134
#> [427,]  70   7      1          4        0   184
#> [428,]  72   1      1          1        0   168
#> [429,]  73  10      0        180        0   162
#> [430,]  72  11      0         11        1   140
#> [431,]  70   3      0          3        0   150
#> [432,]  76  25      1         12        1   170
#> [433,]  75   1      0        180        1   140
#> [434,]  73   5      0        180        0   126
#> [435,]  73   4      0        180        0   124
#> [436,]  74  34      1          8        1   233
#> [437,]  76   3      1          0        1   120
#> [438,]  71  32      1         12        1   107
#> [439,]  72   5      0        180        0   154
#> [440,]  72   3      0        180        0   160
#> [441,]  76   5      0          5        1   130
#> [442,]  77  11      0         11        1   150
#> [443,]  75   3      1          1        0   180
#> [444,]  73  15      0         15        1   160
#> [445,]  71  16      0        180        0   140
#> [446,]  73  10      1         10        0   124
#> [447,]  74   3      0          3        1   128
#> [448,]  76   1      0        180        0   114
#> [449,]  74   2      1          1        0   140
#> [450,]  73   6      0          6        1   114
#> [451,]  75  23      1         14        1   110
#> [452,]  74   2      0        180        0   190
#> [453,]  72   4      0         85        1   120
#> [454,]  76  13      1         10        0   110
#> [455,]  75   4      1          0        1   122
#> [456,]  75   7      0          7        0   190
#> [457,]  75   0      0          0        1   130
#> [458,]  73  13      1         11        0   195
#> [459,]  76  13      1          8        1   148
#> [460,]  74   6      0        180        0   160
#> [461,]  76   4      0          4        1   155
#> [462,]  74   2      0        180        0   111
#> [463,]  73   1      0         52        1   105
#> [464,]  73   0      0        180        0   156
#> [465,]  72   5      0        180        0   120
#> [466,]  76   5      0        180        0   185
#> [467,]  76   5      1          0        1   167
#> [468,]  74   8      1          8        1   170
#> [469,]  75   9      0        180        1   140
#> [470,]  73  10      1          9        0   146
#> [471,]  76  12      1         11        1   120
#> [472,]  74   9      1          8        0   200
#> [473,]  74   2      1          0        1   130
#> [474,]  77   3      0        180        0   110
#> [475,]  76  29      0         47        0    90
#> [476,]  74  15      0        180        1   172
#> [477,]  78   8      1          6        1   110
#> [478,]  74   7      0          7        0   161
#> [479,]  78  32      1          9        1   198
#> [480,]  79   6      0        180        0   170
#> [481,]  80  10      1          6        1   147
#> [482,]  78   0      0        180        1   212
#> [483,]  80   8      0          8        1   120
#> [484,]  74  10      1          8        0   135
#> [485,]  79   4      0         80        0   145
#> [486,]  78  12      1          9        0   150
#> [487,]  78   2      1          1        0   130
#> [488,]  75   4      1          0        0   212
#> [489,]  78  10      0        180        1   130
#> [490,]  75  11      1          4        0   162
#> [491,]  75   3      0          3        0     0
#> [492,]  76   7      0         29        1   150
#> [493,]  79   8      0         32        1   120
#> [494,]  80   9      0         23        1   128
#> [495,]  80   6      0          6        1   150
#> [496,]  76   3      1          0        1   140
#> [497,]  78  11      1          1        1   140
#> [498,]  79   2      1          0        1   121
#> [499,]  78  14      1          0        1   140
#> [500,]  81   1      0          1        0   130
#> [501,]  76   4      0          4        1   160
#> [502,]  79   4      0          4        1   125
#> [503,]  76  10      1          8        0   180
#> [504,]  76  12      1         10        1   127
#> [505,]  80   3      1          0        1   120
#> [506,]  75   2      1          1        1   204
#> [507,]  76   1      0          1        1   140
#> [508,]  77  31      1          3        1   161
#> [509,]  78   7      1          0        1   110
#> [510,]  79   3      0          3        0   120
#> [511,]  77   7      0        180        1   170
#> [512,]  81   1      0        180        0   120
#> [513,]  80  15      1         12        1   150
#> [514,]  77   9      1          4        0   141
#> [515,]  78   4      0         59        1   112
#> [516,]  80  17      1         12        0   100
#> [517,]  76   7      0        161        0   151
#> [518,]  79  10      0         10        1   120
#> [519,]  80  15      1          0        1    90
#> [520,]  81   4      1          2        1   126
#> [521,]  78  32      0        180        1   130
#> [522,]  81   3      0        180        0   184
#> [523,]  81   2      0        175        0   172
#> [524,]  78   7      0          7        1   147
#> [525,]  77  13      1          0        1   190
#> [526,]  78  15      0         15        0   165
#> [527,]  80   5      1          1        1   108
#> [528,]  78   4      0        180        0   175
#> [529,]  78  26      1          5        0   194
#> [530,]  76   1      0        166        0   131
#> [531,]  80   1      0          1        0   100
#> [532,]  82   3      1          1        1   144
#> [533,]  77   5      0         85        0   188
#> [534,]  80   2      1          1        0   168
#> [535,]  79   6      0          6        0   152
#> [536,]  79  10      0        180        1   150
#> [537,]  81   1      0        108        0   129
#> [538,]  79   1      0        125        0   193
#> [539,]  82  21      1          2        0   155
#> [540,]  79   4      0          4        1   121
#> [541,]  83   9      1          5        1   170
#> [542,]  83   5      0        180        0   148
#> [543,]  79   7      1          6        0   130
#> [544,]  83   4      0        103        0    97
#> [545,]  81  11      1          8        0   160
#> [546,]  81   5      0        177        0    41
#> [547,]  80  11      1          8        0   170
#> [548,]  78  23      1         10        1   145
#> [549,]  79   4      0          4        1   183
#> [550,]  78   9      1          4        1   120
#> [551,]  82   8      1          1        0   128
#> [552,]  79   1      0        180        1   170
#> [553,]  81  15      0        180        1   140
#> [554,]  81  20      1          9        0   170
#> [555,]  83   8      0          8        0   115
#> [556,]  81  16      0         16        1   110
#> [557,]  80  11      1          8        0   110
#> [558,]  81   8      0        180        0   146
#> [559,]  80   8      1          7        0   160
#> [560,]  79   7      0        177        0   197
#> [561,]  79   0      1          0        1    96
#> [562,]  85   4      0        180        0    90
#> [563,]  81   2      1          1        0   198
#> [564,]  82   6      0        128        1   100
#> [565,]  84   4      0        167        0   198
#> [566,]  84   5      0        180        1   203
#> [567,]  81   1      0          1        1   150
#> [568,]  83   3      0        180        0   174
#> [569,]  79   9      1          8        0   150
#> [570,]  84   4      0         89        1   129
#> [571,]  80   2      1          0        1   130
#> [572,]  80   6      0         71        1   189
#> [573,]  83   1      0          1        1   100
#> [574,]  80  30      1         13        0   220
#> [575,]  79  14      1          0        0   110
#> [576,]  83   2      0        154        0   130
#> [577,]  82   0      0          2        1   100
#> [578,]  85   9      1          6        1   160
#> [579,]  83   1      0        180        0   160
#> [580,]  84  15      1         13        1   110
#> [581,]  81  12      0         12        1   163
#> [582,]  82  16      1          8        0   103
#> [583,]  82   5      1          0        1   146
#> [584,]  86  12      0        180        1   120
#> [585,]  83  12      1          2        1   170
#> [586,]  81  19      1         14        0   120
#> [587,]  82  15      1          0        0   183
#> [588,]  80   2      0         88        0   135
#> [589,]  86   8      0          8        1   132
#> [590,]  81  16      1          9        0   180
#> [591,]  84   6      0        165        0   145
#> [592,]  86   3      0          3        1   140
#> [593,]  84   3      0        180        1   120
#> [594,]  81  13      0        180        0   152
#> [595,]  85   3      0          3        1   118
#> [596,]  81   2      1          0        1   118
#> [597,]  83   9      0        180        1   149
#> [598,]  82   1      0        180        1   193
#> [599,]  86  12      1          0        1   132
#> [600,]  83  19      0         43        0   150
#> [601,]  84   3      1          2        0   125
#> [602,]  83  10      1          0        1   190
#> [603,]  86   2      0        180        1   169
#> [604,]  88  14      1          3        1   130
#> [605,]  84   3      0          3        1   121
#> [606,]  83  13      1         12        0   170
#> [607,]  84   7      1          2        0   148
#> [608,]  87   2      0        180        0   113
#> [609,]  84   3      0        180        1   170
#> [610,]  82   4      0          4        0   130
#> [611,]  86  13      0        177        0   163
#> [612,]  85   3      0          3        1   113
#> [613,]  86   6      0          6        1   117
#> [614,]  84  13      0         62        1   100
#> [615,]  88   4      0          4        0   100
#> [616,]  83  20      1          3        1   150
#> [617,]  85  22      0         22        1   184
#> [618,]  86   9      1          7        1   142
#> [619,]  87   2      0        180        1   130
#> [620,]  86   6      0         46        0   173
#> [621,]  88   3      0        115        0   110
#> [622,]  88   2      0        180        1    68
#> [623,]  86  15      1          8        1   109
#> [624,]  88   4      0          4        0    86
#> [625,]  89   4      0          4        1   153
#> [626,]  89   5      0        119        1   140
#> [627,]  87   6      0        180        1   110
#> [628,]  84   8      0        180        1   119
#> [629,]  84   2      0        110        1   174
#> [630,]  87  29      0         29        1    97
#> [631,]  87  15      1          9        1   138
#> [632,]  84   0      0        180        1   136
#> [633,]  88   1      0          1        0   135
#> [634,]  86   4      0        180        1   145
#> [635,]  91   8      0          8        0   100
#> [636,]  87   2      0        180        0   160
#> [637,]  91  10      0        145        0   135
#> [638,]  90  11      1         10        1   186
#> [639,]  87   6      0        126        1   168
#> [640,]  86   9      1          7        0   130
#> [641,]  90   4      1          0        0   121
#> [642,]  91   1      0          1        1    74
#> [643,]  87  43      0        178        1   130
#> [644,]  87   5      0         36        1   150
#> [645,]  90   5      1          0        1   125
#> [646,]  89   3      1          1        1   160
#> [647,]  92   1      0          1        1   167
#> [648,]  91   3      0         33        1   137
#> [649,]  87   7      0         74        1   105
#> [650,]  89   2      0        168        0   118
#> [651,]  91   5      0        169        1   176
#> [652,]  92   7      0          7        1   110
#> [653,]  89   4      0          4        1   159
#> [654,]  91   0      0          0        0     0
#> [655,]  89  14      0        180        1    84
#> [656,]  90  18      0        180        0   188
#> [657,]  91   4      1          0        1   120
#> [658,]  90  19      1         11        1   129
#> [659,]  94   6      0         50        0    78
#> [660,]  93   8      0        179        1   110
#> [661,]  94   8      0          8        1   142
#> [662,]  90  16      0         16        1   106
#> [663,]  96   3      0         12        1    97
#> [664,]  95   8      1          5        1   150
#> [665,]  91   7      0          7        0   135
#> [666,]  93   0      1          0        1   122
#> [667,]  92   5      0         69        0   139
#> [668,]  92   2      0          2        0   112
#> [669,]  93   4      0        180        1   135
#> [670,]  96  15      1          0        1   140
#> 
#> $y
#>   [1] 180.0+   5.0+   5.0+ 180.0+   5.0+ 180.0+ 180.0+ 180.0+ 115.0  180.0+
#>  [11] 180.0+   5.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+   2.0+ 180.0+   5.0+
#>  [21]   2.0+ 180.0+   3.0  180.0+ 180.0+ 180.0+ 180.0+ 155.0+ 180.0+ 180.0+
#>  [31] 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+
#>  [41] 180.0+ 180.0+ 180.0+ 180.0+ 180.0+  73.0    5.0+ 180.0+ 180.0+ 180.0+
#>  [51] 180.0+   5.0+ 180.0+ 180.0+ 180.0+ 177.0+ 180.0+ 180.0+ 180.0+ 180.0+
#>  [61]  10.0+ 172.0+ 180.0+ 180.0+ 180.0+   7.0  180.0+ 180.0+   2.0    1.0 
#>  [71] 180.0+ 179.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+
#>  [81]   7.0   36.0   88.0+   4.0+ 180.0+ 180.0+ 180.0+ 180.0+  77.0  180.0+
#>  [91] 180.0+ 180.0+ 180.0+ 180.0+   4.0+  85.0  180.0+ 180.0+ 166.0+  99.0 
#> [101] 180.0+  16.0+ 180.0+ 152.0+   7.0+   6.0+ 180.0+ 180.0+ 171.0+ 180.0+
#> [111] 180.0+ 174.0+  28.0  180.0+   9.0+ 180.0+ 175.0+ 180.0+   2.0  180.0+
#> [121] 180.0+ 180.0+ 180.0+  16.0+ 180.0+  16.0  180.0+ 180.0+ 134.0+   8.0 
#> [131] 180.0+ 180.0+ 140.0    1.0  165.0  180.0+ 180.0+ 180.0+ 180.0+ 180.0+
#> [141] 180.0+ 180.0+   0.5  180.0+ 180.0+ 180.0+  15.0    5.0+   4.0+ 147.0+
#> [151] 180.0+ 180.0+   5.0+   4.0+ 180.0+   1.0  180.0+ 180.0+   2.0+ 180.0+
#> [161]   2.0  180.0+ 180.0+ 180.0+ 180.0+ 180.0+  64.0  180.0+ 180.0+ 180.0+
#> [171]   9.0+ 180.0+ 180.0+ 180.0+   3.0    1.0  180.0+ 180.0+  17.0   45.0 
#> [181] 180.0+ 180.0+ 180.0+ 172.0+  24.0  180.0+  15.0  180.0+  77.0   13.0+
#> [191]   8.0+ 180.0+ 180.0+ 180.0+ 169.0    7.0    7.0+   6.0  180.0+ 180.0+
#> [201] 180.0+   3.0+ 180.0+ 180.0+  28.0   13.0+   5.0    5.0+ 180.0+ 180.0+
#> [211]   1.0  180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+   4.0+ 180.0+ 180.0+
#> [221]   7.0+  22.0  180.0+ 180.0+  84.0    7.0+ 180.0+ 180.0+ 180.0+   1.0 
#> [231]   4.0+   3.0+ 167.0    6.0+ 180.0+ 180.0+  17.0   12.0  180.0+  14.0+
#> [241]   3.0+  88.0  180.0+  12.0  180.0+ 180.0+ 180.0+   0.5  180.0+ 180.0+
#> [251]  12.0+ 180.0+ 180.0+ 180.0+ 180.0+  12.0    9.0    3.0  180.0+ 180.0+
#> [261]  11.0+   2.0+  18.0+ 180.0+ 180.0+ 180.0+   3.0+   2.0+ 103.0  180.0+
#> [271]  13.0  180.0+ 179.0+ 166.0+  14.0+   3.0    0.5+ 180.0+ 180.0+ 175.0+
#> [281] 180.0+   8.0   16.0  180.0+   1.0  180.0+ 180.0+ 123.0+   1.0+  11.0+
#> [291] 180.0+  79.0   15.0+  15.0  180.0+ 180.0+   8.0+ 175.0   10.0  180.0+
#> [301] 180.0+   6.0  180.0+  19.0+  12.0   99.0  180.0+ 179.0+ 180.0+ 180.0+
#> [311]  18.0    7.0+ 180.0+ 180.0+ 180.0+  93.0   21.0+ 180.0+  18.0+ 101.0 
#> [321]   4.0    7.0+ 150.0  180.0+ 180.0+   1.0  180.0+ 180.0+ 174.0+   6.0 
#> [331] 180.0+ 180.0+ 180.0+ 180.0+ 180.0+  14.0+ 180.0+   2.0    5.0+ 103.0 
#> [341]  36.0  180.0+ 180.0+ 180.0+   7.0    8.0+ 180.0+ 180.0+  18.0  172.0+
#> [351] 180.0+   7.0  180.0+   8.0+  13.0+ 180.0+  19.0  180.0+  60.0   76.0 
#> [361] 180.0+  10.0+ 180.0+ 162.0  124.0    9.0   12.0  180.0+ 180.0+ 180.0+
#> [371] 180.0+   2.0   76.0  180.0+ 180.0+ 180.0+ 180.0+ 180.0+  28.0  180.0+
#> [381] 180.0+  16.0+ 180.0+ 180.0+ 180.0+ 180.0+   7.0+   3.0+  13.0+ 180.0+
#> [391] 180.0+   3.0+  20.0  180.0+  20.0    0.5  180.0+ 180.0+ 180.0+   8.0 
#> [401]  87.0   12.0  180.0+   4.0+  58.0  180.0+ 180.0+ 180.0+ 180.0+   3.0 
#> [411] 175.0  180.0+  14.0+ 180.0+ 180.0+   8.0+ 179.0+ 180.0+ 180.0+ 159.0 
#> [421]  15.0  180.0+   1.0   13.0  180.0+   4.0+ 104.0+   1.0  180.0+  11.0 
#> [431]   3.0+ 180.0+ 180.0+ 180.0+ 180.0+  34.0  180.0+ 177.0+ 180.0+ 180.0+
#> [441]   5.0   11.0+ 180.0+  15.0+ 180.0+  10.0    3.0  180.0+ 180.0+   6.0 
#> [451] 180.0+ 180.0+  85.0  174.0+   4.0    7.0    0.5  180.0+ 180.0+ 180.0+
#> [461]   4.0  180.0+  52.0  180.0+ 180.0+ 180.0+ 180.0+   8.0  180.0+ 180.0+
#> [471]  12.0  168.0+ 176.0+ 180.0+  47.0  180.0+   8.0+   7.0   32.0  180.0+
#> [481]  10.0  180.0+   8.0  180.0+  80.0  180.0+ 180.0+   4.0+ 180.0+ 152.0+
#> [491]   3.0   29.0   32.0   23.0    6.0    3.0+ 180.0+ 180.0+ 180.0+   1.0 
#> [501]   4.0    4.0   10.0+ 180.0+   3.0+   2.0+   1.0  171.0   43.0    3.0 
#> [511] 180.0+ 180.0+ 180.0+  71.0   59.0   17.0  161.0   10.0+ 180.0+  93.0 
#> [521] 180.0+ 180.0+ 175.0+   7.0+  22.0   15.0+   5.0+ 180.0+ 171.0+ 166.0+
#> [531]   1.0  180.0+  85.0   10.0    6.0+ 180.0+ 108.0  125.0  180.0+   4.0 
#> [541]   9.0+ 180.0+ 180.0+ 103.0  180.0+ 177.0+ 169.0   70.0    4.0  180.0+
#> [551] 180.0+ 180.0+ 180.0+  20.0    8.0+  16.0  180.0+ 180.0+ 180.0+ 177.0+
#> [561]   0.5  180.0+ 180.0+ 128.0  167.0  180.0+   1.0  180.0+ 180.0+  89.0 
#> [571] 180.0+  71.0    1.0   30.0  180.0+ 154.0    2.0  180.0+ 180.0+ 180.0+
#> [581]  12.0   16.0+   5.0+ 180.0+  77.0  180.0+  83.0   88.0    8.0  180.0+
#> [591] 165.0    3.0  180.0+ 180.0+   3.0+ 180.0+ 180.0+ 180.0+ 180.0+  43.0 
#> [601] 180.0+ 180.0+ 180.0+  14.0    3.0   13.0  180.0+ 180.0+ 180.0+   4.0 
#> [611] 177.0    3.0+   6.0+  62.0    4.0+  20.0   22.0   11.0  180.0+  46.0 
#> [621] 115.0  180.0+ 180.0+   4.0    4.0  119.0  180.0+ 180.0+ 110.0   29.0 
#> [631] 180.0+ 180.0+   1.0+ 180.0+   8.0  180.0+ 145.0   11.0  126.0  180.0+
#> [641]   4.0    1.0  178.0+  36.0   89.0    3.0+   1.0   33.0   74.0  168.0 
#> [651] 169.0    7.0    4.0    0.5  180.0+ 180.0+   4.0  180.0+  50.0  179.0+
#> [661]   8.0+  16.0   12.0    8.0    7.0+   0.5   69.0    2.0  180.0+  15.0+
#> 
#> $weights
#> NULL
#> 


# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)
#> Warning: Multiple lambdas have been fit. Lambda will be set to 0.01 (see parameter 's').

# Score the predictions
predictions$score()
#> surv.cindex 
#>   0.8279945