Decision Tree Algorithm.
Calls C50::C5.0.formula()
from C50.
Meta Information
Task type: “classif”
Predict Types: “response”, “prob”
Feature Types: “numeric”, “factor”, “ordered”
Required Packages: mlr3, mlr3extralearners, C50
Parameters
Id | Type | Default | Levels | Range |
trials | integer | 1 | \([1, \infty)\) | |
rules | logical | FALSE | TRUE, FALSE | - |
costs | untyped | NULL | - | |
subset | logical | TRUE | TRUE, FALSE | - |
bands | integer | - | \([0, 1000]\) | |
winnow | logical | FALSE | TRUE, FALSE | - |
noGlobalPruning | logical | FALSE | TRUE, FALSE | - |
CF | numeric | 0.25 | \([0, 1]\) | |
minCases | integer | 2 | \([0, \infty)\) | |
fuzzyThreshold | logical | FALSE | TRUE, FALSE | - |
sample | numeric | 0 | \([0, 0.999]\) | |
seed | integer | - | \((-\infty, \infty)\) | |
earlyStopping | logical | TRUE | TRUE, FALSE | - |
label | untyped | "outcome" | - | |
na.action | untyped | "stats::na.pass" | - |
Super classes
mlr3::Learner
-> mlr3::LearnerClassif
-> LearnerClassifC50
Methods
Inherited methods
mlr3::Learner$base_learner()
mlr3::Learner$configure()
mlr3::Learner$encapsulate()
mlr3::Learner$format()
mlr3::Learner$help()
mlr3::Learner$predict()
mlr3::Learner$predict_newdata()
mlr3::Learner$print()
mlr3::Learner$reset()
mlr3::Learner$selected_features()
mlr3::Learner$train()
mlr3::LearnerClassif$predict_newdata_fast()